Manufacturing Technology 2022, 22(4):461-470 | DOI: 10.21062/mft.2022.054

Properties of MgCaZr Alloys

Jan Serak ORCID..., Cyril Simon ORCID..., Dalibor Vojtech ORCID...
University of Chemistry and Technology Prague, Department of Metals and Corrosion Engineering, Technicka 5, 166 28 Prague 6. Czech Republic

The use of most commercial magnesium alloys is limited to working at normal temperatures. The excellent ratio between the mechanical properties and the density of magnesium alloys necessarily leads to the development of new types of alloys that would be usable even at elevated temperatures. This would significantly increase the applicability of these alloys where steels or aluminum alloys are still used, especially in the transport industry. The problem with today's high temperature resistant magnesium alloys is the need to use expensive rare earth alloys. Significantly cheaper alloys of magnesium with zirconium and calcium are studied in this work. The microstructure, mechanical properties under pressure at the temperatures of 20, 150, 200 and 250 ° C were studied for several alloys with different contents of Zr and Ca. Furthermore, the stability of alloys during their long-term temperature exposure was studied. A very positive effect of the studied additives on the properties of alloys was found, which gives these alloys a very promising perspective in the future.

Keywords: Magnesium Alloys, Thermal stability, Mechanical Properties, Microstructure, Alloying
Grants and funding:

The presented results were obtained in the frame of the A1_FCHT_2022_007 research project

Received: August 30, 2022; Revised: August 30, 2022; Accepted: October 4, 2022; Prepublished online: October 6, 2022; Published: October 17, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Serak J, Simon C, Vojtech D. Properties of MgCaZr Alloys. Manufacturing Technology. 2022;22(4):461-470. doi: 10.21062/mft.2022.054.
Download citation

References

  1. AVEDESIAN, M.M., BAKER H. (1999). Magnesium and magnesium alloys, Materials Park, OH: ASM International. ISBN: 978-0-87170-657-7
  2. POLMEAR, I., STJOHN, D., NIE, J. F., QIAN, M. (2017). Light Alloys - Metallurgy of the Light Metals. ISBN: 978-0-08099-431-4 Go to original source...
  3. SONG, J., SHE, J., CHEN, D., PAN, F. (2020). Latest research advances on magnesium and magnesium alloys worldwide. In: Journal of Magnesium and Alloys, Vol. 8, No.1, pp. 1-41. https://doi.org/10.1016/j.jma.2020.02.003 Go to original source...
  4. PRASAD, S. V. S., PRASAD, S. B., VERMA, K., MISHRA, R. K., KUMAR, V., SINGH, S. (2022). The role and significance of Magnesium in modern day research-A review. In: Journal of Magnesium and Alloys Vol.10, No.1, pp. 1-61. https://doi.org/10.1016/j.jma.2021.05.012 Go to original source...
  5. PEKGULERYUZ, M., KAYA, A. (2014). Magnesium Diecasting Alloys for High Temperature Applica-tions. In: Essential Readings in Magnesium Technology. ISBN: 978-3-319-48588-1
  6. KING, J. (2006). Development of Practical High Temperature Magnesium Casting Alloys In: Magnesium Alloys and their Applications, pp. 14-22. DOI:10.1002/3527607552.ch3 Go to original source...
  7. ZHANG, W., LI, M., CHEN, Q., HU, W., ZHANG, W., XIN, W. (2012). Effects of Sr and Sn on microstructure and corrosion resistance of Mg-Zr-Ca magnesium alloy for biomedical applications. In: Materials and Design, Vol. 39, pp. 379-383. DOI: 10.1039/c5tb00433k Go to original source...
  8. DING, Y., WEN, C., HODGSON, P., LI, Y. (2014). Effects of alloying elements on the corrosion behaviour and biocompatibility of biodegradable magnesium alloys. In: J. Mater. Chem. B, Vol. 2., pp. 1912-1933, https://doi.org/10.1039/C3TB21746A Go to original source...
  9. KIANI, F., LIN, J., VAHID, A., MUNIR, K., WEN, C., LI, Y. (2022). Mechanical and corrosion properties of extruded Mg-Zr-Sr alloys for biodegradable implant applications. In: Materials Science and Engineering A, Vol. 5, pp.831- 842. DOI:10.1016/j.msea.2021.142192 Go to original source...
  10. SEZER, N., EVIS, Z., KAYHAN, S. M., TAHMASEBIFAR, A., KOÇ, M. (2018). Review of magnesium-based biomaterials and their applications. In: Journal of Magnesium and Alloys, Vol. 1, No. 6, pp. 23-43. https://doi.org/10.1016/j.jma.2018.02.003 Go to original source...
  11. PAN, H., QIN, G., HUANG, Y., REN, Y., SHA, X., HAN, X., LIU, Z. Q., LI, C., WU, X., CHEN, H., HE, C., CHAI, L., WANG, Y., NIE, J.F. (2018). Development of low alloyed and rare-earth-free magnesium alloys having ultra high strength. In: Acta Materialia, No. 149, pp. 350-363. DOI:10.1016/j.actamat.2018.03.002 Go to original source...
  12. POPESCU, G., MOLDOVAN, P., BOJIN, D., SILLEKENS, W. H. (2009). Influence of heat treatment on magnesium alloys meant to automotive industry. In: UPB Scientific Bulletin, Series B: Chemistry and Materials Science, No. 71, pp. 85-92. ISSN 1454-2331
  13. GUPTA, M., S. NAI MUI LING (2011). Magnesium, Magnesium Alloys, and Magnesium Composites, Hoboken, John Wiley & Sons, Incorporated. ISBN: 9780470494172 Go to original source...
  14. ASL, K., TARI, A., KHOMAMIZADEH, F. (2009). The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg-Al alloys. In: Materials Science and Engineering: A, No. 523, DOI:10.1016/j.msea.2009.06.048 Go to original source...
  15. CHANG, T. A., WANG, J., CHU, C. L., LEE, S. (2006). Mechanical properties and microstructures of various Mg-Li alloys. In: Materials Letters, No. 60, pp. 3272-3276. DOI:10.1016/j.matlet.2006.03.052 Go to original source...
  16. LI, W., ZHOU, H., ZHOU, W., WANG, M. X. (2007). Effect of cooling rate on ignition point of AZ91D-0.98 wt.% Ce magnesium alloy. In: Materials Letters, No. 61, pp. 2772-2774. https://doi.org/10.1016/j.matlet.2006.10.028 Go to original source...
  17. MISHRA, R. K., GUPTA, A. K., RAO, P. R., SACHDEV, A. K., KUMAR, A. M., LUO, A. A. (2008). Influence of cerium on the texture and ductility of magnesium extrusions. In: Scripta Materialia, Vol. 59, No. 5, pp. 562-565. https://doi.org/10.1016/j.scriptamat.2008.05.019 Go to original source...
  18. ANYANWU, I. A., KAMADO, S., KOJIMA, Y. (2001). Creep properties of Mg-Gd-Y-Zr alloys. In: Materials Transactions, Vol. 42, No. 7, pp. 1212-1218. https://doi.org/10.2320/matertrans.42.1212 Go to original source...
  19. ZHANG, Q., CHEN, Z., ZHONG, W., ZHAO, J.C. (2017). Accurate and efficient measurement of im-purity (dilute) diffusion coefficients without isotope tracer experiments. In: Scripta Materialia, Vol.128, pp. 32-35, http://dx.doi.org/10.1016/j.scriptamat.2016.09.040 Go to original source...
  20. GAO, L., CHEN, R. S., HAN, E. (2009) Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. In: Journal of Alloys and Compounds, No. 481, pp. 379-384. DOI:10.1016/j.jallcom.2009.02.131 Go to original source...
  21. YANG, L., YUAN, Y., CHEN, T., DAI, X., ZHANG, L., LI, D., TANG, A., YI, W., ZHANG, L., PAN, F. (2021). Diffusion behaviour and mechanical properties of binary Mg-Gd system. In: Intermetal-lics, Vol. 133, https://doi.org/10.1016/j.intermet.2021.107171 Go to original source...
  22. LEI, B., JIANG, B., YANG, H., DONG, Z., WANG, Q., YUAN, M., HUANG, G., SONG, J., ZHANG, D., PAN, F. (2021). Effect of Nd addition on the microstructure and mechanical properties of extruded Mg-Gd-Zr alloy. In: Materials Science and Engineering A, No. 816, DOI:10.1016/j.msea.2021.141320 Go to original source...
  23. YAN, J., SUN, Y., XUE, F., XUE, S., YINGYING, X., TAO, W. (2009). Creep behaviour of Mg-2 wt.%Nd binary alloy. In: Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, No. 524, pp. 102-107. DOI:10.1016/j.msea.2009.06.008 Go to original source...
  24. CHOU, D.-T., HONG, D., SAHA, P., FERRERO, J., LEE, B., TAN, Z., DONG, Z., KUMTA, P. N. (2013) In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. In: Acta Biomaterialia, Vol. 9, No. 10, pp. 8518-8533. https://doi.org/10.1016/j.actbio.2013.06.025 Go to original source...
  25. SOCJUSZ-PODOSEK, M., LITYÑSKA, L. (2003). Effect of yttrium on structure and mechanical properties of Mg alloys. In: Materials Chemistry and Physics, Vol. 80, No. 2, pp. 472-475. DOI:10.1016/S0254-0584(02)00549-7 Go to original source...
  26. NINOMIYA, R., OJIRO, T., KUBOTA, K. (1995). Improved heat resistance of Mg-Al alloys by the Ca addition. In: Acta Metallurgica et Materialia, Vol. 43, No.2, pp. 669-674. https://doi.org/10.1016/0956-7151(94)00269-N Go to original source...
  27. GANDEL, D. S., EASTON, M., GIBSON, M., ABBOTT, T., BIRBILIS, N. (2014). The influence of zirconium additions on the corrosion of magnesium. In: Corrosion Science, No. 81, pp. 27-35. DOI:10.1016/j.corsci.2013.11.051 Go to original source...
  28. LIU, H., NING, Z., CAO, F., ZHANG, Y., SUN, J. (2011). Effect of Melting Process on Zr Content and Grain Refinement in ZE41A Alloy. In: Advanced Materials Research, No. 284-286, pp. 1651-1655. DOI:10.4028/www.scientific.net/AMR.284-286.1651 Go to original source...
  29. QIAN, M., JOHN, D., FROST, M. (2003). Effect of Soluble and Insoluble Zirconium on the Grain Refinement of Magnesium Alloys. In: Materials Science Forum, pp. 419-422. DOI:10.4028/www.scientific.net/MSF.419-422.593 Go to original source...
  30. QIAN, M., DAS, A. (2006) Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains. In: Scripta Materialia, Vol. 5, No.54, 54, pp. 881-886. DOI:10.1016/j.scriptamat.2005.11.002 Go to original source...
  31. QIAN, M., STJOHN, D., FROST, M. (2011). Zirconium alloying and grain refinement of magnesium alloys. In: TMS Annual Meeting 2011.
  32. SERAK, J., VODEROVA, M., VOJTECH, D., NOVAK, P. (2014). Microstructure and Properties of Magnesium Alloys Working at Elevated Temperatures. In: Manufacturing Technology, Vol.14, No.2, pp. 238-244. DOI:10.21062/ujep/x.2014/a/1213-2489/MT/14/2/238 Go to original source...
  33. PEKGULERYUZ, O., KAYA, A. (2003). Creep Resistant Magnesium Alloys for Powertrain Applica-tions. In: Advanced Engineering Materials, Vol. 5, No. 2, pp. 866-878. DOI:10.1002/adem.200300403 Go to original source...
  34. DONG, X., FENG, L., WANG, S., NYBERG, A., JI, S. (2021). A new die-cast magnesium alloy for applications at higher elevated temperatures of 200-300 °C. In: Journal of Magnesium Alloys, Vol. 9, pp. 90-101. https://doi.org/10.1016/j.jma.2020.09.012 Go to original source...
  35. SERAK, J., VOJTECH, D., REISER, M. (2019). Influence of Sn, Pb, Bi and Sb on the Microstructure and Mechanical Properties of Commercial AlSi8Cu2 Alloy. Manufacturing Technology, Vol. 18, No. 5, 2019, pp. 658 - 691, DOI: 10.21062/ujep/356.2019/a/1213-2489/MT/19/4/685 Go to original source...
  36. SERAK, J., VOJTECH, D. (2017). Dispersion of Mechanical Properties of Commercial Aluminium Al-loys within Their Material Standards. Manufacturing Technology, Vol. 17, No. 5, 2017, pp. 831-837, DOI: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/831 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.