Manufacturing Technology 2022, 22(4):436-443 | DOI: 10.21062/mft.2022.057

Effect of Higher Iron Content and Manganese Addition on the Corrosion Re-sistance of AlSi7Mg0.6 Secondary Alloy

Martin Mikolajčík ORCID..., Eva Tillová ORCID..., Lenka Kuchariková ORCID..., Lucia Pastierovičová ORCID..., Mária Chalupová ORCID..., Milan Uhríčik ORCID..., Zuzana ©urdová ORCID...
Faculty of Mechanical Engineering, Department of Materials Engineering University of ®ilina, Univerzitná 8215/1, 010 26 ®ilina, Slovakia

The use of secondary aluminium alloys gives manufacturers in many industries the opportunity to produce their products more economically and environmentally friendly. The secondary aluminium alloy production is sustainable in the long term. As aluminium does not lose its excellent properties through recycling, secondary aluminium alloys have the potential to replace primary aluminium in many applications. However, recycled aluminium alloys have the disadvantage of insufficient sorting and thus a higher content of impurities in their chemical composition. The most common undesirable element in Al-Si-Mg cast alloys is iron. It adversely affects mechanical properties, fatigue behaviour and corrosion resistance. The influence of iron can be reduced by the addition of manganese. This paper deals with the effect of manganese on the morphology of Fe-phases and corrosion resistance of AlSi7Mg0.6 secondary alloy with higher iron content (0.75 % and 1.26 %).

Keywords: AlSi7Mg0.6 cast alloy, Corrosion resistance, Audi test, Higher iron content, Manganese addition
Grants and funding:

The research was supported by the Scientific Grand Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences, VEGA 09/0398/19, KEGA 016®U-4/2020, the project to support young researchers at UNIZA, ID project 12715 (Kuchariková) and project 313011ASY4 „Strategic implementation of additive technologies to strengthen the intervention capacities of emergencies caused by the COVID-19 pandemic“

Received: July 30, 2022; Revised: August 30, 2022; Accepted: October 4, 2022; Prepublished online: October 6, 2022; Published: October 17, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Mikolajčík M, Tillová E, Kuchariková L, Pastierovičová L, Chalupová M, Uhríčik M, ©urdová Z. Effect of Higher Iron Content and Manganese Addition on the Corrosion Re-sistance of AlSi7Mg0.6 Secondary Alloy. Manufacturing Technology. 2022;22(4):436-443. doi: 10.21062/mft.2022.057.
Download citation

References

  1. ARRABAL, R., MINGO, B., PARDO, A., MOHEDANO, M., MATYKINA, E., RODRÍGUEZ, I. (2013). Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt.% NaCl solution. In: Corrosion Science, Vol. 73, pp. 342 - 355. ISSN 0010-938X. Go to original source...
  2. EBHOTA, W.S., TIEN-CHIEN, J. (2018). Intermetallics Formation and Their Effect on Mechanical Properties of Al-Si-X Alloys. In: Intermetallic Compounds - Formation and Applications. London: IntechOpen. ISBN 978-1-83881-298-0. Go to original source...
  3. SKOČOVSKÝ, P., BOKŮVKA, O., KONEČNÁ, R., TILLOVÁ, E. (2014). Náuka o materiáli, pp. 271 - 278. EDIS-vydavateµstvo ®U, ®ilina. ISBN 978.80-554-0871-2.
  4. HOSOVÁ, K., KUBÁSEK, J., STRAKOVÁ, M., NEČAS, D. (2020). Material Properties of Firefighter Lad-der Composed from AA6063 and Few Other Aluminium-Based Alloys. In: Manufacturing Technologies, Vol. 20, No. 6, pp. 748 - 754. ISSN 1213-2489. Go to original source...
  5. SVOBODOVA, J., LUNAK, M., LATTNER, M. (2019). Analysis of the Increased Iron Content on the Cor-rosion Resistance of the AlSi7Mg0,3 Alloy Casting. In: Manufacturing Technology, Vol. 19, No. 6, pp. 1041 - 1046. ISSN 1213-2489. Go to original source...
  6. PODPROCKÁ, R., BOLIBRUCHOVÁ, D. (2017). Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese. In: Archives of Foundry Engineering, Vol. 17, No. 3, pp. 217 - 221. ISSN 2299-2944. Go to original source...
  7. KUCHARIKOVÁ, L., TILLOVÁ, E., PASTIRČÁK, R., UHRÍČIK, M., MEDVECKÁ, D. (2019). Effect of Wall Thickness on the Quality of Casts from Secondary Aluminium Alloy. In: Manufacturing Technology, Vol. 19, No. 5, pp. 797 - 801. ISSN 1213-2489. Go to original source...
  8. MINCIUNA, M. G., VIZUREANU, P., JEŻ, B., SANDU, A. V., NABIAŁEK, M., ACHITEI, D. C. (2022). Correlation between Microstructure and Electrochemical Properties of Al-Si Alloys. In: Archives of Metallurgy and Materials, Vol. 67, No. 3, pp. 1067 - 1070. ISSN 1733-3490.
  9. POLOCZEK, Ł., DYBOWSKI, B., RODAK, K., JAROSZ, R., KIEŁBUS, A. (2015). Influence of Age Hardening Parameters on the Microstructure and Properties of the AlSi7Mg Sand Cast Alloy. In: Archives of Metallurgy and Materials, Vol. 60, No. 4, pp. 3035 - 3041. ISSN 1733-3490. Go to original source...
  10. The Advantages of Using Cast Aluminum. (2021). Available online at: https://www.tfgusa.com/cast-aluminum-advantages/
  11. ZYSKA, A., BOROŃ, K. (2021). Comparison of the Porosity of Aluminum Alloys Castings Produced by Squeeze Casting. In: Manufacturing Technology, Vol. 21, No. 5, pp. 725 - 734. ISSN 1213-2489. Go to original source...
  12. VANKO, B., STANČEK, L. (2012). Utilization of heat treatment aimed to spheroidization of eutectic silicon for silumin castings produced by squeeze casting. In: Archives of foundry engineering. Vol. 12, Iss. 1, pp. 111-114. ISSN 1897-3310. Go to original source...
  13. STANČEK, L., VANKO, B., BATY©EV, A. I. (2014). Structure and properties of silumin castings solidified under pressure after heat treatment. In: Metal Science and Heat Treatment, vol. 56, No. 3-4, pp. 197 - 202. Go to original source...
  14. ZYSKA, A., KONOPKA, Z., . ŁAGIEWKA, M., NADOLSKI, M. (2013). Optimization of Squeeze Parame-ters and Modification of AlSi7Mg Alloy. In: Archives of Foundry Engineering, Vol. 13, No. 2, pp. 113 - 116. ISSN 2299-2944. Go to original source...
  15. BEHESHTI, R. (2017). Suitanable Aluminium and Iron Production. KTH Royal Institute of Technology, Stock-holm. ISBN 978-91-7729-214-2.
  16. EAA_recycling brochure: RECYCLING ALUMINIUM A PATHWAY TO A SUSTAINABLE ECONOMY (2015), https://european-aluminium.eu/resource-hub/recycling-aluminium-a-pathway-to-a-sustainable-economy/
  17. KUCHARIKOVÁ, L., TILLOVÁ, E., BOKŮVKA, O. (2016). Recycling and properties of recycled aluminium alloys used in the transportation industry. In: Transport Problems, vol. 11, No. 2, pp. 117 - 122. Go to original source...
  18. WWR_Aluminum Cast Alloys. Casting (Metalworking). Alloy, https://www.scribd.com/document/137004346/WWR-AluminumCastAlloys
  19. APELIAN, D. (2009). Aluminum Cast Alloys: Enabling Tools for Improved Performance, pp. 6. North Ameri-can Die Casting Association, Wheeling, Illinois.
  20. MICHNA, ©., LUKÁČ, I., OČENÁ©EK, V., KOŘENÝ, R., DRÁPALA, J., SCHNEIDER, H., MI©KUFOVÁ, A., et al. (2005). Encyklopedie hliníku, pp. 176 - 177. Adin, s. r. o., Preąov. ISBN 80-89041-88-4.
  21. DOBKOVSKA, A., ADAMCZYK - CIE¦LAK, B., MIZERA, J., KURZYDŁOWSKI, K. J., KIEŁBUS, A. (2016). The Comparison of the Microstructure and Corrosion Resistance of Sand Cast Aluminum Alloys. In: Archives of Metallurgy and Materials, Vol. 61, No. 1, pp. 209 - 212. ISSN 1733-3490. Go to original source...
  22. KUSMIERCZAK, S., HREN, I. (2019). Influence of AlSi7Mg0,3 Alloy Modification on Corrosion Behaviour in the Salt Environment. In: Manufacturing Technology, Vol. 19, No. 5, pp. 802 - 806. ISSN 1213-2489. Go to original source...
  23. KUCHARIKOVÁ, L., LIPTÁKOVÁ, T., TILLOVÁ, E., BONEK, M., MEDVECKÁ, D. (2020). Corrosion Behaviour Correlation of the Secondary Aluminium Casts in Natural Atmosphere and Laboratory Conditions. In: Archives of Metallurgy and Materials, Vol. 65, No. 4, pp. 1455 - 1462. ISSN 1733-3490.
  24. KUCHARIKOVÁ, L., et al. (2018). Role of Chemical Composition in Corrosion of Aluminum Alloys. In: Materials, Vol. 8, No. 8, pp. 1 - 13. ISSN 2075-4701. Go to original source...
  25. BERLANGA-LABARI, C., BIEZMA-MORALEDA, M. V., RIVERO, P. J. (2020). Corrosion of Cast Alumi-num Alloys: A Review, In: Metals, Vol. 10, No. 10, 1384. Go to original source...
  26. FOUSOVA, M., et al. (2019). Corrosion of 3D-Printed AlSi9Cu3Fe Alloy. In: Manufacturing Technology, Vol. 19, No. 1, pp. 29 - 36. ISSN 1213-2489. Go to original source...
  27. GOMES, L. F., KUGELMEIER, C. L., GARCIA, A., DELLA ROVERE, C. A. & SPINELLI, J. E. (2021). Influences of alloying elements and dendritic spacing on the corrosion behaviour of Al-Si-Ag alloys, In: Journal of Materials Research and Technology, 15, pp. 5880-5893. Go to original source...
  28. CECCHEL, S., CORNACCHIA, G., GELFI, M. (2018). A study of a non-conventional evaluation of results from salt spray test of aluminum High Pressure Die Casting alloys for automotive components, In: Materials and Corrosion, Vol. 70, No. 1, pp. 70-78. Go to original source...
  29. ARRABAL, R., MINGO, B., PARDO, A., MOHEDANO, M., MATYKINA, E., MERINO, M. C., RIVAS, A. (2015). Microstructure and corrosion behaviour of A356 aluminium alloy modified with Nd. In: Materials and Corrosion, Vol. 66, No. 6, pp. 535 - 541. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Go to original source...
  30. PODPROCKÁ, R., BOLIBRUCHOVÁ, D. (2018). The Role of Manganese in the Alloy Based on Al-Si-Mg with Higher Iron Content. In: Manufacturing Technology, Vol. 18, No. 4, pp. 650 - 654. ISSN 1213-2489. Go to original source...
  31. PEZDA, J., JARCO, A. (2016). Effect of T6 Heat Treatment Parameters on Technological Quality of the AlSi7Mg Alloy. In: Archives of Foundry Engineering, Vol. 16, No. 4, pp. 95 - 100. ISSN 2299-2944. Go to original source...
  32. HURTALOVÁ, L., TILLOVÁ, E., CHALUPOVÁ, M. (2015). Possibilities of Fe-rich phases elimination with using heat treatment in secondary Al-Si-Cu cast alloy. In: Metalurgija, Vol. 54, No. 1, pp. 39 - 42. ISSN 0543-5846.
  33. BORKO, K.; TILLOVÁ, E.; CHALUPOVÁ, M. (2016). The Impact of Sr Content on Fe - Intermetallic Phase's Morphology Changes in Alloy AlSi10MgMn. In: Manufacturing Technology, Vol. 16, No. 1, pp. 20-6. Go to original source...
  34. VA©KO, A., MARKOVIČOVÁ, L., ZATKALÍKOVÁ, V. & TILLOVÁ, E. 2014. Quantitative Evaluation of Microstructure of Graphitic Cast Irons. In: Manufacturing Technology, 14, pp. 478-82. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.