Manufacturing Technology 2022, 22(4):414-422 | DOI: 10.21062/mft.2022.058

Analysis of the Effect of Heat Treatment and Corrosion Load on the Microstructure and Microhardness of the Ti6Al4V Alloy

Iryna Hren ORCID..., Sylvia Ku¶mierczak ORCID..., Roman Horký ORCID..., Jaromír Mach
Faculty of Mechanical Engineering, J. E. Purkyne University in Usti nad Labem. Pasteurova 3334/7, 400 01 Usti nad Labem. Czech Republic

In terms of physical and chemical properties, titanium and its alloys are among the most important construction materials today. The Ti6Al4V alloy can be classified among high-strength materials with good plasticity, corrosion resistance and other valuable properties. When performing operations associated with long-term heating of workpieces and parts made of titanium alloys in an air atmosphere, a TiO2 layer is formed on the surface of the product. Ti6Al4V alloy, also known as Ti64, in terms of microstructure is a two-phase alloy formed by α+β solid solutions, which has excellent corrosion resistance and biocompatibility. This alloy is also suitable for jet engines, gas turbines and many aircraft components, as well as in biomedicine. Heat treatment can further improve its technical properties, reduces stress, improves machinability, fracture toughness. The surface of alloys can also be thermally stressed when micro and nano layers of material are applied, which serve to extend the life of products made of this alloy. The presented article analyzes the effect of heat treatment at temperatures of 550 °C and 600 °C and corrosion load with salt fog in the range of 168 to 720 hours on the microstructure and microhardness of the Ti6Al4V alloy.

Keywords: Ti6Al4V alloy, corrosion, microhardness
Grants and funding:

Supported by the project: UJEP-SGS-2020-48-002-2

Received: July 26, 2022; Revised: October 4, 2022; Accepted: October 5, 2022; Prepublished online: October 6, 2022; Published: October 17, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hren I, Ku¶mierczak S, Horký R, Mach J. Analysis of the Effect of Heat Treatment and Corrosion Load on the Microstructure and Microhardness of the Ti6Al4V Alloy. Manufacturing Technology. 2022;22(4):414-422. doi: 10.21062/mft.2022.058.
Download citation

References

  1. PRYMAK, O., BOGDANSKI, D., KÖLLER, M., ESENWEIN, S., & col. (2005). Morphological characterization and in vitro biocompatibility of a porous nickel-titanium alloy. Biomaterials, Vol. 26, Issue 29, pp. 5801-5807. ISSN 0142-9612. Go to original source...
  2. BROOKSHIRE, F. V. G., NAGY, W. W., DHURU, V. B., ZIEBERT, G. J., CHADA, S. (1997). The qualitative effects of various types of hygiene instrumentation on commercially pure titanium and titanium alloy implant abutments: an in vitro and scanning electron microscope study.
  3. LEYENS, C., PETERS, M. (2003). Titanium and titanium alloys, Fundamental and applications. WILEY-VCH, pp. 333-350, 401-404. ISBN:9783527602117. Go to original source...
  4. XIAOGUANG, F., QI, L., ANMING, Z., YUGUO, S., WENJIA M. (2017). The Effect of Initial Structure on Phase Transformation in Continuous Heating of a TA15 Titanium Alloy. Metals, Vol. 7, No. 6, pp. 1-12. ISSN 2075-4701. Go to original source...
  5. PEDERSON, R., BABUSHKIN O., SKYSTEDT F. AND WARREN R. (2003). Use of High Temperature X-ray Diffractometry to Study Phase Transitions and Thermal Expansion Properties in Ti - 6Al - 4V. Materials Science and Technology, Vol.19, No. 11, pp. 1533-1538. Go to original source...
  6. LEE, K., YANG, S., YANG, J. (2017) Optimization of Heat-treatment Parameters in Hardening of Titanium Alloy Ti-6Al-4V by using the Taguchi Method. International Journal of Advanced Manufacturing and Technology, Vol. 90, pp. 753-761. Go to original source...
  7. HUA, Q., WEIDONG, L. (2011) Theoretical Calculation of β Transition Temperature of Ti-6Al-4V from Valence Electron Level. Advanced Materials Research, pp. 299-300, ISSN: 1662-8985. Go to original source...
  8. FIDAN, S., AVCU, E., KARAKULAK, E., YAMANOGLU, R., ZEREN M., SINMAZCELIK T. (2013). Effect of Heat Treatment on Erosive Wear Behaviour of Ti6Al4V alloy. Materials Science and Technology, Vol. 29, No. 9, pp. 1088-1094. Go to original source...
  9. Imam, M. A., Gilmore, C. M., (1983) Fatigue and Microstructural Properties of Quenched Ti-6AI-4V. Metallurgical Transactions A, Vol. 14, pp. 223-240. Go to original source...
  10. SUDHAGARA, R. S., JITHIN, V., GEETHA, M., NAGESWARA R. M. (2018). Processing of Beta Titanium Alloys for Aerospace and Biomedical Applications. Titanium Alloys - Novel Aspects of Their Manufacturing and Processing Intech, Open 1-18.
  11. HADKE, S., KHATIRKAR, R. K., SHEKHAWAT, S. K., JAIN, S., SAPATE, S. G. (2015) Microstructure Evolution and Abrasive Wear Behavior of Ti-6Al-4V Alloy. Journal of Materials Engineering and Performance, Vol. 24, pp. 3969-3981. Go to original source...
  12. SEMIATIN, S. L., KNISLEY, S. L., FAGIN, P. N., ZHANG, F., BARKER D. R. (2003). Microstructure Evolution during Alpha-Beta Heat Treatment of Ti-6Al-4V. Metallurgical and Materials Transactions A, Vol. 34, pp. 2377-2386. Go to original source...
  13. QU, S. G., SUN, F. J., YUAN, Z. M., LI, G., LI Q. (2015). Effect of Annealing Treatment on Microstructure and Mechanical Properties of Hot Isostatic Pressing Compacts Fabricated using Ti-6Al-4V Powder. Powder Metallurgy, Vol. 58, No. 4, pp. 312-319. Go to original source...
  14. JOVANOVIC, M. T., TADIÆ, S., ZEC S., MI©KOVIC, Z., BOBIÆ I. (2006). The Effect of Annealing Temperatures and Cooling Rates on Microstructure and Mechanical Properties of Investment Cast Ti-6Al-4V Alloy. Materials and Design, Vol. 27, No. 3, pp. 192-199. ISSN 0261-3069. Go to original source...
  15. RAJAGOPAL, K. P. A., JOSE, A. M., SOMAN, A., DCRUZ, C. J., NIVED, S. N., SYAMRAJ, S., VIMALKUMAR P. (2015). Investigation of Physical and Mechanical Properties of Ti Alloy (Ti-6Al-4V) Under Precisely Controlled Heat Treatment Processes. International Journal of Mechanical Engineering and Technology, Vol. 6, No. 2, pp. 116-127. ISSN 0976 - 6359.
  16. KLIMAS, J., SZOTA, M., NABIA£EK, M., £UKASZEWICZ, A., BUKOWSKA, A. (2013). Comparative description of structure and properties of Ti6Al4V titanium alloy for biomedical applications produced by two methods: conventional (molding) and innovative (injection) ones, Journal of Achievements in Materials and Manufacturing Engineering. Vol. 61, No. 2, pp. 195-201. Go to original source...
  17. FOMIN, F., FROEND, M., VENTZKE, V., ALVAREZ, P., BAUER, S., KASHAEV, N. (2018). Metallurgical aspects of joining commercially pure titanium to Ti-6Al-4V alloy in a T-joint configuration by laser beam welding. The International Journal of Advanced Manufacturing Technology, Vol. 97, pp. 2019-2031. Go to original source...
  18. LIU, S., SHIN, Y. C. (2019). Additive manufacturing of Ti6Al4V alloy. Materials & Design, Vol.164, 107552, ISSN 0264-1275. Go to original source...
  19. HÖNNIGE, J.R., COLEGROVE, P. A., AHMAD, B., FITZPATRICK, M. E., GANGULY, S., LEE, T. L., WILLIAMS, S. W. (2018). Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling, pp. 193-205. Mater. Des., 150. Go to original source...
  20. HAYES, B.J., MARTIN, B. W., WELK, B., KUHR, S. J., ALES, T. K., BRICE, D. A., GHAMARIAN, I., BAKER, A.H., HADEN, C. V., HARLOW, D. G., FRASER, H. L., COLLINS P. C. (2017). Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition, Acta Mater. Vol. 133, pp. 120-133. ISSN 1359-6454. Go to original source...
  21. NIINOMI, M. (2003). Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods. Science and Technology of Advanced Materials, Vol. 4, No. 5, pp. 445-454. ISSN 1468-6996. Go to original source...
  22. CHEN, J., PAN, C. (2011). Welding of Ti-6Al-4V alloy using dynami- cally controlled plasma arc welding process. Transactions of Nonferrous Metals Society of China, Vol. 21, No. 7, pp. 1506-1512. ISSN 1003-6326. Go to original source...
  23. WU, M., XIN, R., WANG, Y., ZHOU, Y., WANG, K., LIU Q. (2016). Microstructure, texture and mechanical properties of commercial high-purity thick titanium plates jointed by electron beam welding. Materials Science and Engineering, Vol. 677, pp. 50-57. Go to original source...
  24. SQUILLACE, A., PRISCO, U., CILIBERTO, S., ASTARITA, A. (2012). Effect of welding parameters on morphology and mechanical properties of Ti-6Al-4V laser beam welded butt joints. Journal of Materials Processing Technology, Vol. 212, pp. 427-436. ISSN 0924-0136. Go to original source...
  25. KASHAEV, N., VENTZKE, V., FOMICHEV, V., FOMIN, F., RIEKEHR. S. (2016). Effect of Nd:YAG laser beam welding on weld morphology and mechanical properties of Ti-6Al-4V butt joints and T-joints. Optics and Lasers in Engineering, Vol. 86, pp.172-180. Go to original source...
  26. LI, X., XIE, J., ZHOU, Y. (2005). Effect of oxygen contamination in the argon shielding gas in laser welding of commercially pure titanium thin sheet. J Mater Sci, Vol. 40, pp. 3437-3443. Go to original source...
  27. DAI, N., ZHANG, L. C., ZHANG, J., CHEN, Q., WU, M. (2016). Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corros. Sci., Vol. 102, pp. 484-489. Go to original source...
  28. BAI, Y., GAI, X., LI, S., ZHANG, L. C., LIU, Y., HAO, Y., ZHANG, X., YANG, R., GAO, Y. Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline. Corrosion Science, Vol. 123, pp 289-296. ISSN 0010-938X. Go to original source...
  29. ZIELIÑSKI, A., SOBIESZCZYK, S. (2010). Corrosion of Titanium Biomaterials, Mechanisms, Effects and Modelisation. Corrosion Reviews, Vol. 26, pp 1-22. Go to original source...
  30. KOUØIL, M. (2011). Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization. Weinheim. Materials and Corrosion, Vol. 63, No. 4, pp. 310-316. Go to original source...
  31. KRYSHNA, D. S. R. (2006). Thick rutile layer on titanium for tribological applications. Tribology International, Vol. 40, No. 2, pp 329-334. Singapore. ISSN 0301-679X. Go to original source...
  32. LIU, S., SHIN, Y. C. (2019) Additive manufacturing of Ti6Al4V alloy. A review, Materials & Design, Vol. 164, ISSN 0264-1275. Go to original source...
  33. VASILKO, K. (2019). Titanium and Technological Problems of Its Machining. Manufacturing Technology, Vol. 19, No. 3, pp. 525-530. ISSN 1213-2489. Go to original source...
  34. HANUSOVÁ P., PALÈEK P., UHRÍÈIK M. (2019). Analysis of the Cause of Titanium Endoprosthesis Failure. Manufacturing Technology, Vol. 19, No. 5, pp. 749-752. Go to original source...
  35. UHLMANN, E., KERSTING, R., KLEIN, T. B., CRUZ, M. F., BORILLE. A. V. (2015). Additive manufacturing of titanium alloy for aircraft components. Proc. CIRP, Vol. 35, pp. 55-60. ISSN 2212-8271. Go to original source...
  36. EMMELMANN, C., SANDER, P., KRANZ, J., WYCISK, E. (2011). Laser additive manufacturing and bionics: redefining lightweight design. Phys. Procedia, Vol. 12, pp. 364-368. ISSN 1875-3892. Go to original source...
  37. HAO, Y. L., LI, S. J., YANG, R. (2016). Biomedical titanium alloys and their additive manufacturing. Rare Metals, Vol. 35, No. 9, pp. 661-671. Go to original source...
  38. GIANNATSIS, J., DEDOUSSIS V. (2009). Additive fabrication technologies applied to medicine and health care. Int. J. Adv. Manuf. Technol., Vol. 40, No. 1, pp. 116-127. Go to original source...
  39. MARTIKAN, A., STRUHARNANSKY, J., STANCEKOVA, D., CZAN, A., HATALA, M. (2015). Influence of Chemical Etching on Surface Micro-Geometry of Titanium Implants. Manufacturing Technology, Vol. 15, No. 4, pp. 601-604. Go to original source...
  40. STANCEKOVA, D., SEMCER, J., RUDAWSKA, A., CEP, R. (2015). Identification of Drilling of Biocompatible Materials Based on Titanium. Manufacturing Technology, Vol. 15, No. 4, pp. 699-704. Go to original source...
  41. GORYNIN, I. V. (1999). Titanium alloys for marine application. Materials Science and Engineering: A, Vol. 263, No. 2, pp. 112-116. ISSN 0921-5093, Go to original source...
  42. ORYSHCHENKO, A. S., GORYNIN, I. V., LEONOV, V. P., KUDRYAVTSEV, A. S., MIKHAILOV, V. I., CHUDAKOV E.V. (2015) Marine titanium alloys: present and future. Inorg. Mater. Appl. Res., Vol. 6, No. 6, pp. 571-579. Go to original source...
  43. ÈSN EN ISO 9227 (038132). Corrosion tests in artificial atmospheres - Salt spray tests. ISO 9227:2017
  44. ÈSN EN ISO 6507-1 (420374). Metallic materials - Vickers hardness test - Part 1: Test method. ISO 6507-1:2018.
  45. BAHRAMINASAB, M., SAHARI, B. B., EDWARDS, K. L., FARAHMAND, F., ARUMUGAM, M., HONG, T. S. Aseptic loosening of femoral components - A review of current and future trends in materials used. Materials & Design, Vol. 42, pp. 459-470. Go to original source...
  46. KUMAR, S., (2010) Thermal oxidation of Ti6Al4V alloy: Microstructural and electrochemical characterization. Materials Chemistry and Physics, Vol. 119, pp. 337-346. ISSN 0254-0584. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.