Manufacturing Technology 2022, 22(5):558-572 | DOI: 10.21062/mft.2022.061

Analysis and Prediction of Roughness of Face Milled Surfaces using CAD Model

János Kundrák ORCID..., Csaba Felhő ORCID..., Antal Nagy ORCID...
Institute of Manufacturing Science, University of Miskolc. Egyetemváros, 3515 Miskolc. Hungary

The condition for the designability and efficiency of the machining processes is that the part production process is chosen to meet the operational requirements based on the most accurate technological plans possible. One part of this is the planning of the required quality and roughness of the surfaces and achievement of the required values in the finishing. In this paper, a study on the predictability of surface roughness was performed using a CAD model based on theoretical roughness and validated by cutting experiments. The reported results show the effect of the feed rate change in face milling for two tools with different edge geometries in planes parallel to the feed direction.

Keywords: Face Milling, Surface Roughness, Theoretical Roughness, CAD Modelling of Roughness, Roughness Estimation

Received: September 15, 2022; Revised: October 18, 2022; Accepted: November 16, 2022; Prepublished online: December 6, 2022; Published: December 11, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kundrák J, Felhő C, Nagy A. Analysis and Prediction of Roughness of Face Milled Surfaces using CAD Model. Manufacturing Technology. 2022;22(5):558-572. doi: 10.21062/mft.2022.061.
Download citation

References

  1. MAREK, M., NOVÁK, M., ©RAMHAUSER, K. (2019). The Impact of Changes in Feed Rate on Surface Integrity after Chrome Plate Grinding by Microcrystalline Corundum. In: Manufacturing Technology, Vol. 19, pp. 461 - 468. DOI: 10.21062/UJEP/313.2019/A/1213-2489/MT/19/3/461 Go to original source...
  2. DOBROCKY, D., POKORNY, Z., STUDENY, Z., DOSTAL, P. (2019). Change of Selected Parameters of Steel Surface after Plasma Nitriding. In: Manufacturing Technology, Vol. 19, pp. 204 - 208. DOI: 10.21062/UJEP/270.2019/A/1213-2489/MT/19/2/204 Go to original source...
  3. BAKSA, T., FARSKY J., HRONEK, O., ZETEK, M. (2019). Surface Quality after Grinding VACO 180 Tool Steel using Different Cutting Conditions. In: Manufacturing Technology, Vol. 19, pp. 179 - 183. DOI: 10.21062/UJEP/266.2019/A/1213-2489/MT/19/2/179 Go to original source...
  4. KARPUSCHEWSKI, B., KUNDRÁK, J., EMMER, T., BORYSENKO, D. (2017). A New Strategy in Face Milling - Inverse Cutting Technology. In: Solid State Phenomena, Vol. 261, pp. 331 - 338. DOI: 10.4028/WWW.SCIENTIFIC.NET/SSP.261.331 Go to original source...
  5. NOVAK, M. (2012). Surfaces with high precision of roughness after grinding. In: Manufacturing Technology, Vol. 12, pp. 66 - 70. DOI: 10.21062/UJEP/X.2012/A/1213-2489/MT/12/1/66 Go to original source...
  6. FELHO, C., KUNDRAK, J. (2012). Characterization of Topography of Cut Surface Based on Theoretical Roughness Indexes. In: Key Engineering Materials, Vol. 496, pp. 194 - 199. DOI: 10.4028/WWW.SCIENTIFIC.NET/KEM.496.194 Go to original source...
  7. KHORASANI, A.M., YAZDI, M.R.S. (2015). Development of a dynamic surface roughness monitoring system based on artificial neural networks (ANN). In: milling operation. In: The International Journal of Advanced Manufacturing Technology, Vol. 93, No. 1, pp. 141 - 151. DOI: 10.1007/S00170-015-7922-4 Go to original source...
  8. RAZA, M.H., HAFEEZ, F., ZHONG, R.Y., IMRAN, A. (2020). In:vestigation of surface roughness in face milling processes. In: The International Journal of Advanced Manufacturing Technology, Vol. 111, pp. 2589 - 2599. DOI: 10.1007/S00170-020-06188-8 Go to original source...
  9. WU, T.Y., LEI, K.W. (2019). Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network. In: The International Journal of Advanced Manufacturing Technology, Vol. 102, No. 1, pp. 305 - 314. DOI: 10.1007/S00170-018-3176-2 Go to original source...
  10. LIU, G., ZOU, B., HUANG, C., WANG, X., WANG, J., LIU, Z. (2015). Tool damage and its effect on the machined surface roughness in high-speed face milling the 17-4PH stainless steel. In: The International Journal of Advanced Manufacturing Technology, Vol. 83, No. 1, pp. 257 - 264. DOI: 10.1007/S00170-015-7564-6 Go to original source...
  11. SADÍLEK, M., KOUSAL, L., NÁPRSTKOVÁ, N., SZOTKOWSKI, T., HAJNY©, J. (2018). The Analysis of Accuracy of Machined Surfaces and Surfaces Roughness after 3axis and 5axis Milling. In: Manufacturing Technology, Vol. 18, pp. 1015 - 1022. DOI: 10.21062/ujep/217.2018/a/1213-2489/MT/18/6/1015 Go to original source...
  12. HECKER, R.L., LIANG, S.Y. (2003). Predictive modeling of surface roughness in grinding. In: International Journal of Machine Tools and Manufacture, Vol. 43, pp. 755 - 761. DOI: 10.1016/S0890-6955(03)00055-5 Go to original source...
  13. CHEN, J., ZHAO, Q. (2015). A model for predicting surface roughness in single-point diamond turning. In: Measurement, Vol. 69, pp. 20 - 30. DOI: 10.1016/J.MEASUREMENT.2015.03.004 Go to original source...
  14. RAZFAR, M.R., ZINATI, R.F., HAGHSHENAS, M. (2010). Optimum surface roughness prediction in face milling by using neural network and harmony search algorithm. In: The International Journal of Advanced Manufacturing Technology, Vol. 52, No. 5, pp. 487 - 495. DOI: 10.1007/S00170-010-2757-5 Go to original source...
  15. BENARDOS, P.G., VOSNIAKOS, G.C. (2003). Predicting surface roughness in machining: A review. In: International Journal of Machine Tools and Manufacture, Vol. 43, pp. 833 - 844. DOI: 10.1016/S0890-6955(03)00059-2 Go to original source...
  16. KROLCZYK, G., RAOS, P., LEGUTKO, S. (2014). Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts. In: Tehnički Vjesnik - Tehnical Gazette, Vol. 21, pp. 217 - 221. DOI: Go to original source...
  17. CALVO, R., D'AMATO, R., GÓMEZ, E., RUGGIERO, A. (2019). Experimental analysis of the surface roughness in the coefficient of friction test. In: Procedia Manufacturing, Vol. 41, pp. 153 - 160. DOI: 10.1016/J.PROMFG.2019.07.041 Go to original source...
  18. DRÉGELYI-KISS, Á., HORVÁTH, R., MIKÓ, B. (2013). Design of experiments (DOE) in investigation of cutting technologies. Development in Machining Technology Vol. 3., pp. 20 - 34. Cracow University of Technology, Cracow. ISBN: 978-83-7242-697-0
  19. PÉREZ, C.J.L. (2010). Surface roughness modelling considering uncertainty in measurements. In: International Journal of Production Research, Vol. 40, pp. 2245 - 2268. DOI: 10.1080/00207540210125489 Go to original source...
  20. MUÑOZ-ESCALONA, P., MAROPOULOS, P.G. (2015). A geometrical model for surface roughness prediction when face milling Al 7075-T7351 with square insert tools. In: Journal of Manufacturing Systems, Vol. 36, pp. 216 - 223. DOI: 10.1016/J.JMSY.2014.06.011 Go to original source...
  21. BAEK, D.K., KO, T.J., KIM, H.S. (2001). Optimization of feedrate in a face milling operation using a surface roughness model. In: International Journal of Machine Tools and Manufacture, Vol. 41, pp. 451 - 462. DOI: 10.1016/S0890-6955(00)00039-0 Go to original source...
  22. BLOUL, B., BOURDIM, A., HAMOU, S., BOURDIM, M. (2017). Geometric analysis of the influence of perpendicularity of a spindle axis of the milling machine on the surface quality. In: Advances in Mechanical Engineering, Vol. 9, pp. 1 - 8. DOI: 10.1177/1687814017700831 Go to original source...
  23. MGHERONY, A., MIKÓ, B., FARKAS, G. (2021). Comparison of Surface Roughness When Turning and Milling. In: Periodica Polytechnica Mechanical Engineering, Vol. 65, pp. 337 - 344. DOI: 10.3311/PPME.17898 Go to original source...
  24. WANG, R., WANG, B., BARBER, G.C., GU, J., SCHALL, J.D. (2019). Models for Prediction of Surface Roughness in a Face Milling Process Using Triangular Inserts. In: Lubricants, Vol. 7, No. 1, ArtNo. 9. DOI: 10.3390/LUBRICANTS7010009 Go to original source...
  25. QU, J., SHIH, A.J. (2007). Analytical Surface Roughness Parameters of a Theoretical Profile Consisting of Elliptical Arcs. In: Machining Science and Technology, Vol. 7, No. 2, pp. 281 - 294. DOI: 10.1081/MST-120022782 Go to original source...
  26. FRANCO, P., ESTREMS, M., FAURA, F. (2004). Influence of radial and axial runouts on surface roughness in face milling with round insert cutting tools. In: International Journal of Machine Tools and Manufacture, Vol. 44, pp. 1555 - 1565. DOI: 10.1016/J.IJMACHTOOLS.2004.06.007 Go to original source...
  27. LOUATI, H., BOUZID, W. (2013). Roughness profile in high speed face milling operation. In: Materials Technology, Vol. 23, No. 4, pp. 231 - 237. DOI: 10.1179/175355508X330861 Go to original source...
  28. ÇOLAK, O., KURBANOǦLU, C., KAYACAN, M.C. (2007). Milling surface roughness prediction using evolutionary programming methods. In: Materials & Design, Vol. 28, No. 2, pp. 657 - 666. DOI: 10.1016/J.MATDES.2005.07.004 Go to original source...
  29. GRZENDA, M., BUSTILLO, A. (2013). The evolutionary development of roughness prediction models. In: Applied Soft Computing, Vol. 13, pp. 2913 - 2922. DOI: 10.1016/J.ASOC.2012.03.070 Go to original source...
  30. BREZOCNIK, M., KOVACIC, M. (2007). Integrated Genetic Programming and Genetic Algorithm Approach to Predict Surface Roughness. In: Materials and Manufacturing Processes, Vol. 18, No. 3, pp. 475 - 491. DOI: 10.1081/AMP-120022023 Go to original source...
  31. BRUNI, C., D'APOLITO, L., FORCELLESE, A., GABRIELLI, F., SIMONCINI, M. (2008). Surface roughness modelling in finish face milling under MQL and dry cutting conditions. In: International Journal of Material Forming, Vol. 1, No. 1, pp. 503 - 506. DOI: 10.1007/S12289-008-0151-8 Go to original source...
  32. CHANG, C.K., LU, H.S. (2006). Study on the prediction model of surface roughness for side milling operations. In: The International Journal of Advanced Manufacturing Technology, Vol. 29, No. 9, pp. 867 - 878. DOI: 10.1007/S00170-005-2604-2 Go to original source...
  33. CORREA, M., BIELZA, C., RAMIREZ, M.D.J., ALIQUE, J.R. (2008). A Bayesian network model for surface roughness prediction in the machining process. In: International Journal of Systems Science, Vol. 39, No. 12, pp. 1181 - 1192. DOI: 10.1080/00207720802344683 Go to original source...
  34. SAMANTA, B., EREVELLES, W., OMURTAG, Y. (2008). Prediction of workpiece surface roughness using soft computing. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 222, No. 10, pp. 1221 - 1232. DOI: 10.1243/09544054JEM1035 Go to original source...
  35. REDDY, N.S.K., RAO, P.V. (2005). Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling. In: The International Journal of Advanced Manufacturing Technology, Vol. 26, No. 11, pp. 1202 - 1210. DOI: 10.1007/S00170-004-2110-Y Go to original source...
  36. SIMUNOVIC, G., SIMUNOVIC, K., SARIC, T. (2013). Modelling and simulation of surface roughness in face milling. In: International Journal of Simulation Modelling, Vol. 12, pp. 141 - 153. DOI: 10.2507/IJSIMM12(3)1.219 Go to original source...
  37. WANG, B., ZHANG, Q., WANG, M., ZHENG, Y., KONG, X. (2020). A predictive model of milling surface roughness. In: The International Journal of Advanced Manufacturing Technology, Vol. 108, pp. 2755 - 2762. DOI: 10.1007/S00170-020-05599-X Go to original source...
  38. QUINTANA, G., BUSTILLO, A., CIURANA, J. (2012). Prediction, monitoring and control of surface roughness in high-torque milling machine operations. In: International Journal of Computer Integrated Manufacturing, Vol. 25, pp. 1129 - 1138. DOI: 10.1080/0951192X.2012.684717 Go to original source...
  39. ®UPERL, U., ČU©, F. (2019). A cyber-physical system for surface roughness monitoring in end-milling. In: Journal of Mechanical Engineering, Vol. 65, pp. 67 - 77. DOI: 10.5545/SV-JME.2018.5792 Go to original source...
  40. CUI, X., ZHAO, J., JIA, C., ZHOU, Y. (2012). Surface roughness and chip formation in high-speed face milling AISI H13 steel. In: The International Journal of Advanced Manufacturing Technology, Vol. 61, pp. 1 - 13. DOI: 10.1007/S00170-011-3684-9 Go to original source...
  41. CUI, X., GUO, J., ZHAO, J., YAN, Y. (2015). Chip temperature and its effects on chip morphology, cutting forces, and surface roughness in high-speed face milling of hardened steel. In: The International Journal of Advanced Manufacturing Technology, Vol. 77, pp. 2209 - 2219. DOI: 10.1007/S00170-014-6635-4 Go to original source...
  42. LIU, X., WANG, W., JIANG, R., XIONG, Y., LIN, K., LI, J. (2020). Investigation on surface roughness in axial ultrasonic vibration - assisted milling of in situ TiB2/7050Al MMCs. In: The International Journal of Advanced Manufacturing Technology, Vol. 111, pp. 63 - 75. DOI: 10.1007/S00170-020-06081-4 Go to original source...
  43. PIMENOV, D.Y., ABBAS, A.T., GUPTA, M.K., ERDAKOV, I.N., SOLIMAN, M.S., EL RAYES, M.M. (2020). Investigations of surface quality and energy consumption associated with costs and material removal rate during face milling of AISI 1045 steel. In: The International Journal of Advanced Manufacturing Technology, Vol. 107, pp. 3511 - 3525. DOI: 10.1007/S00170-020-05236-7 Go to original source...
  44. YU, S., ZHAO, G., LI, C., XU, S., ZHENG, Z. (2021). Prediction models for energy consumption and surface quality in stainless steel milling. In: The International Journal of Advanced Manufacturing Technology, Vol. 117, pp. 3777 - 3792. DOI: 10.1007/S00170-021-07971-X Go to original source...
  45. ZHENYU, S., LUNING, L., ZHANQIANG, L. (2015). Influence of dynamic effects on surface roughness for face milling process. In: The International Journal of Advanced Manufacturing Technology, Vol. 80, pp. 1823 - 1831. DOI: 10.1007/S00170-015-7127-X Go to original source...
  46. FELHO, C., KUNDRAK, J. (2014). Comparison of Theoretical and Real Surface Roughness in Face Milling with Octagonal and Circular Inserts. In: Key Engineering Materials, Vol. 581, pp. 360 - 365. DOI: 10.4028/WWW.SCIENTIFIC.NET/KEM.581.360 Go to original source...
  47. CUI, X., ZHAO, J. (2014). Cutting performance of coated carbide tools in high-speed face milling of AISI H13 hardened steel. In: The International Journal of Advanced Manufacturing Technology, Vol. 71, pp. 1811 - 1824. DOI: 10.1007/S00170-014-5611-3 Go to original source...
  48. ARIZMENDI, M., JIMÉNEZ, A. (2019). Modelling and analysis of surface topography generated in face milling operations. In: International Journal of Mechanical Sciences, Vol. 163, ArtNo. 105061. DOI: 10.1016/J.IJMECSCI.2019.105061 Go to original source...
  49. PIMENOV, D.Y., BUSTILLO, A., MIKOLAJCZYK, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. In: Journal of Intelligent Manufacturing, Vol. 29, pp. 1045 - 1061. DOI: 10.1007/S10845-017-1381-8 Go to original source...
  50. TORTA, M., ALBERTELLI, P., MONNO, M. (2020). Surface morphology prediction model for milling operations. In: The International Journal of Advanced Manufacturing Technology, Vol. 106, pp. 3189 - 3201. DOI: 10.1007/S00170-019-04687-X Go to original source...
  51. JIN, S., LIU, S., ZHANG, X., CHEN, K. (2019). A unified prediction model of 3D surface topography in face milling considering multi-error sources. In: The International Journal of Advanced Manufacturing Technology, Vol. 102, pp. 705 - 717. DOI: 10.1007/S00170-018-03212-W Go to original source...
  52. LAVERNHE, S., QUINSAT, Y., LARTIGUE, C. (2010). Model for the prediction of 3D surface topography in 5-axis milling. In: The International Journal of Advanced Manufacturing Technology, Vol. 51, pp. 915 - 924. DOI: 10.1007/S00170-010-2686-3 Go to original source...
  53. FELHO, C. (2014). Investigation of surface roughness in machining by single and multi-point tools, 33rd ed. Shaker Verlag, Aachen. ISBN: 978-3-8440-2922-2
  54. KUNDRAK, J., FELHŐ, C. (2016). 3D roughness parameters of surfaces face milled by special tools. In: Manufacturing Technology, Vol. 16, pp. 532 - 538. DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/3/532 Go to original source...
  55. FELHŐ, C., KUNDRÁK, J. (2018). Effects of Setting Errors (Insert Run-Outs). on Surface Roughness in Face Milling When Using Circular Inserts. In: Machines, Vol. 6, No. 2, ArtNo. 14. DOI: 10.3390/MACHINES6020014 Go to original source...
  56. FELHŐ, C., KARPUSCHEWSKI, B., KUNDRÁK, J. (2015). Surface Roughness Modelling in Face Milling. In: Procedia CIRP, Vol. 31, pp. 136 - 141. DOI: 10.1016/j.procir.2015.03.075 Go to original source...
  57. SMITH, G.T. (2008). Cutting Tool Technology. Springer, London. ISBN: 978-1-84800-204-3
  58. BORYSENKO, D., KARPUSCHEWSKI, B., WELZEL, F., KUNDRÁK, J., FELHŐ, C. (2019). Influence of cutting ratio and tool macro geometry on process characteristics and workpiece conditions in face milling. In: CIRP Journal of Manufacturing Science and Technology, Vol. 24, pp. 1 - 5. DOI: 10.1016/j.cirpj.2018.12.003 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.