Manufacturing Technology 2022, 22(5):617-623 | DOI: 10.21062/mft.2022.072

The Effect of Casting Mold Material on Microstructure of Al-Si Alloys

Tomas Vlach ORCID..., Jaromir Cais ORCID...
Faculty of Mechanical Engineering, J. E. Purkyne University in Usti nad Labem. Pasteurova 3334/7, 400 01, Usti nad Labem. Czech Republic

This article deals with the influence of the mold material on the segregation process in selected Al-Si alloys. Three types of Al-Si alloys were chosen in order to compare the segregation process while congealing. AlSi7Mg0.3, AlSi7Cu4 and AlSi10.5Cu1.2Mn0.8Ni1.2Pb0.5 alloys were cast by gravity casting in a metal and sand molds. Macroscopic and microscopic analysis of the internal structure of each of the alloys was also studied. The chemical composition within the lower, middle and upper parts of the casts were observe by using scanning electron microscope. All samples were subjected to the Vickers microhardness measurement of a solid solution of α(Al). The distance between the secondary axes of the dendrites DAS (Dendrite Arm Spacing) was used to evaluate the level of segregation.

Keywords: Segregation, Heterogeinity, Aluminium alloys, Microstructure, DAS, Microhardness
Grants and funding:

This research was supported by the internal UJEP Grant Agency (UJEP-SGS-2022-48-004-2)

Received: August 29, 2022; Revised: December 2, 2022; Accepted: December 6, 2022; Prepublished online: December 7, 2022; Published: December 11, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vlach T, Cais J. The Effect of Casting Mold Material on Microstructure of Al-Si Alloys. Manufacturing Technology. 2022;22(5):617-623. doi: 10.21062/mft.2022.072.
Download citation

References

  1. ROUČKA J., (2004). Metalurgie neželezných slitin, CERM s.r.o., Brno, ISBN 80-214-2790-6
  2. DURAI, K.., SUNDAR, S., SUNDARLINGAM, P., HARSHAVARDHANA, N. (2021). Optimization of highspeed machining cutting parameters for end milling of AlSi7Cu4 using Taguchi based technique of order preference similarity to the ideal solution, Materials Today: Proceedings, Vol. 47, No. 19, pp. 6799-6804, ISSN 2214-7853. Go to original source...
  3. MICHNA, Š., MICHNOVÁ L. (2014). Neželezné kovy, PrintPoint s.r.o., Praha, ISBN 978-80-260-7132-7
  4. TAYLOR, J.A. (2012). Iron-containing intermetallic phase in Al-Si based casting alloys. In: Procedia Materials Science. Vol 1, pp. 19-33. Go to original source...
  5. DINNIS, C. M. et al., (2005). As-cast morphology of iron-intermetallics in Al-Si foundry alloys, Scripta Materialia 53 (8), pp. 955-958. Go to original source...
  6. TILLOVÁ, E., CHALUPOVÁ, M. (2009). Štruktúrna analýza zliatin Al-Si. EDIS Žilina. 191 s. ISBN 978-80-554-0088-4
  7. BOLIBRUCHOVÁ, D., BRŮNA, M. (2017). Impact of the Elements Affecting the Negative IronBased Phases Morphology in Aluminium Alloys - Summary. Results In: Manufacturing Technology. ISSN 1213-2489. Vol. 17, No. 5, p. 675-679 Go to original source...
  8. WEISS, V., SVOBODOVÁ, J. (2015). The Use of Colour Metallography and EDS for Identification of Chemical Heterogeneity of Selected Aluminium Alloys Copper and Zinc Alloyed. Manufacturing Technology, vol. 15, iss. 6, p. 1048-1053. Go to original source...
  9. WEISS, V., (2012). Hodnocení vlivu teploty a doby homogenizačního žíhání slitiny AlCu4MgMn z hlediska mikrostruktury, obrazové analýzy a metody EDX. Strojírenská technologie, vol. 17, iss. 5-6, p. 348-355.
  10. WEISS, V., STŘIHAVKOVÁ, E. (2011). Optimalizace homogenizačního žíhaní slitiny AlCu4MgMn. Strojírenská technologie, vol. 16, iss. 5, p. 42-49.
  11. WEISS, V. (2016). Research of the Chemical Heterogeneity during Crystallization for AlCu4MgMn Alloy and the Possibility of its Elimination. Manufacturing Technology, 2016, vol. 16, iss. 1, p. 289-294. Go to original source...
  12. EN AC-42100 (AISi7Mg0.3) Cast Aluminum: (2022). MakeItFrom.com: Material Properties Database
  13. AlSi7Mg0.3 - Aluminium Silicium Alloy. (2022). Jura-Guss Beilngries | Aluminium Gießerei, Sandguss,
  14. Kokillenguss, Modellbau [online].
  15. [14] MICHNA, Š. CAIS, J. (2016), Hliníková slitina, zejména pro výrobu odlitků segmentů forem pro lisování pneumatik, a způsob tepelného zpracování odlitků segmentů forem. UJEP, Usti nad Labem, Česká republika. Patentový spis CZ 306352 B6. 2.11.2016, EP306352
  16. [15] EN AC-46300 (AISi7Cu4) (2022) European Steel andAlloy Grades / Numbers, SteelNumber,
  17. steelnumber.com [online].
  18. [16] LM21.[online]. [Cit. 19.3. 2022]. Dostupné z: http://www.nortal.co.uk/LM21/

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.