Manufacturing Technology 2022, 22(6):733-746 | DOI: 10.21062/mft.2022.082

Determination of Mechanical Properties of Plastic Components Made by 3D Printing

Josef Sedlak ORCID...1, Zdenek Joska ORCID...2, Lucie Hrbackova ORCID...1, Eva Jurickova ORCID...1, Denisa Hrusecka ORCID...1, Ondrej Horak3
1 Tomas Bata University in Zlín, Faculty of Management and Economics, Department of Industrial Engineering and Information Systems, Mostni 5139, Zlin 760 01, Czech Republic
2 University of Defence in Brno, Faculty of Military Technology, Department of Mechanical Engineering, Kounicova 65, Brno 602 00, Czech Republic
3 Badalky 269, Lysice 679 71, Czech Republic

The presented article deals with the determination of selected mechanical properties of additive ma-terials used for 3D printing (PETG, PLA, ABS, ABS +, PLA ESD, ASA, PC / ABS). Due to the fact that 3D printing has exploded over recent years and additive manufacturing has become popular in some industries, the quality of input materials and their mechanical properties is extremely im-portant. We used 3D printer Original Prusa MK3 to prepare samples for testing. Individual samples printed from all above mentioned materials were analyzed using selected mechanical tests (static tensile test, hardness tests). In the static tensile test, selected parameters (tensile strength limit, ten-sile modulus, elongation) were determined for all additive samples, which were statistically pro-cessed. The parameters for two methods of measuring hardness were also statistically evaluated, namely Shore and ball indentation. All tested additive materials were compared with the aim of ob-taining the final ranking (point evaluation of tested materials with quantification of price costs). The best properties after the performed tests were achieved by the additive material PLA Filament Plasty Mladeč.

Keywords: Aditive manufacturing, 3D printing, Fused filament fabrication, Mechanical properties, Tensile test
Grants and funding:

This work was supported by the specific research project 2020 “SV20-216“ at the Department of Mechanical Engineering, University of Defence in Brno, by the Project for the Development of the Organization “DZRO VAROPS” and also by the project VaV-IP-RO/2022/01 at the Tomas Bata University in Zlín.

Received: August 20, 2022; Revised: November 20, 2022; Accepted: December 9, 2022; Prepublished online: December 9, 2022; Published: January 6, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sedlak J, Joska Z, Hrbackova L, Jurickova E, Hrusecka D, Horak O. Determination of Mechanical Properties of Plastic Components Made by 3D Printing. Manufacturing Technology. 2022;22(6):733-746. doi: 10.21062/mft.2022.082.
Download citation

References

  1. TOFAIL, S. A., KOUMOULOS, E. P., BANDYOPADHYAY, A., BOSE, S., O'DONOGHUE, L., CHARITIDIS, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. In: Materials today, Vol. 21, No. 1, pp. 22-37, https://doi.org/10.1016/j.mattod.2017.07.001 Go to original source...
  2. BRENKEN, B., BAROCIO, E., FAVALORO, A., KUNC, V., PIPES, R. B. (2018). Fused filament fabrication of fiber-reinforced polymers: A review. In: Additive Manufacturing, Vol. 21, pp. 1-16, https://doi.org/10.1016/j.addma.2018.01.002 Go to original source...
  3. D'AVENI, R. (2015). The 3-D Printing Revolution. Harvard Business Review. [online]. [cit. 2020-08-28]. Dostupné z https://hbr.org/2015/05/the-3-d-printing-revolution
  4. BOSE, S., VAHABZADEH, S., BANDYOPADHYAY, A. (2013). Bone tissue engineering using 3D printing. In: Materials today, Vol. 16, No. 12, pp. 496-504, https://doi.org/10.1016/j.mattod.2013.11.017 Go to original source...
  5. RANEY, K., LANI, E., KALLA, D. K. (2017). Experimental characterization of the tensile strength of ABS parts manufactured by fused deposition modeling process. In: Materials Today, Vol. 4, No. 8, pp. 7956-7961, https://doi.org/10.1016/j.matpr.2017.07.132 Go to original source...
  6. DIZON, J. R. C., ESPERA Jr, A. H., CHEN, Q., ADVINCULA, R. C. (2018). Mechanical characterization of 3D-printed polymers. In: Additive Manufacturing, Vol. 20, pp. 44-67, https://doi.org/10.1016/j.addma.2017.12.002 Go to original source...
  7. MELENKA, G. W., CHEUNG, B. K., SCHOFIELD, J. S., DAWSON, M. R., CAREY, J. P. (2016). Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. In: Composite Structures, Vol. 153, pp. 866-875, https://doi.org/10.1016/j.compstruct.2016.07.018 Go to original source...
  8. MONKOVA, K., MONKA, P. P., VANCA, J., ZALUDEK, M., SUBA, O. (2020). Tensile Behaviour of a 3D Printed Lattice Structure. In: Proceedings of the 11th IEEE International Conference on Mechanical and Aerospace Engineering, Athens, Greece, pp. 22-26, https://doi.org/10.1109/ICMAE50897.2020.9178892 Go to original source...
  9. BHAGIA, S., LOWDEN, R. R., ERDMAN III, D., RODRIGUEZ Jr, M., HAGA, B. A., SOLANO, I. R. M., GALLEGO, N., Pu, Y., MUCHERO, W., KUNC, V., RAGAUSKAS, A. J. (2020). Tensile properties of 3D-printed wood-filled PLA materials using poplar trees. In: Applied Materials Today, Vol. 21, 100832, https://doi.org/10.1016/j.apmt.2020.100832 Go to original source...
  10. JIANG, D., SMITH, D. E. (2017). Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication. In: Additive Manufacturing, Vol. 18, pp. 84-94, https://doi.org/10.1016/j.addma.2017.08.006 Go to original source...
  11. CANTRELL, J. T., ROHDE, S., DAMIANI, D., GURNANI, R., DISANDRO, L., ANTON, J., YOUNG, A., JEREZ, A., STEINBACH, D., KROESE, C., IFJU, P. G. (2017). Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. In: Rapid Prototyping Journal, Vol. 23, No. 4, pp. 811-824, https://doi.org/10.1108/RPJ-03-2016-0042 Go to original source...
  12. IMPENS, D., URBANIC, R. J. (2015). Assessing the impact of post-processing variables on tensile and compression characteristics for 3D printed components. In: IFAC-PapersOnLine, Vol. 48, No. 3, pp. 652-657, https://doi.org/10.1016/j.ifacol.2015.06.156 Go to original source...
  13. BALDERRAMA-ARMENDARIZ, C. O., MACDONALD, E., ROBERSON, D. A., RUIZ-HUERTA, L., MALDONADO-MACIAS, A., VALADEZ-GUTIERREZ, E., CABALLERO-RUIZ, A., ESPALIN, D. (2019). Folding behavior of thermoplastic hinges fabricated with polymer extrusion additive manufacturing. In: The International Journal of Advanced Manufacturing Technology, Vol. 105, No. 1-4, pp. 233-245, https://doi.org/10.1007/s00170-019-04196-x Go to original source...
  14. HOU, Z., TIAN, X., ZHANG, J., LI, D. (2018). 3D printed continuous fibre reinforced composite corrugated structure. In: Composite Structures, Vol. 184, pp. 1005-1010, https://doi.org/10.1016/j.compstruct.2017.10.080 Go to original source...
  15. ALSSABBAGH, M., TAJUDDIN, A. A., MANAP, M. B. A., ZAINON, R. (2017). Evaluation of nine 3D printing materials as tissue equivalent materials in terms of mass attenuation coefficient and mass density. In: International Journal of Advanced and Applied Sciences, Vol. 4, No. 9, pp. 168-173, https://doi.org/10.21833/ijaas.2017.09.024 Go to original source...
  16. ZALDIVAR, R. J., WITKIN, D. B., MCLOUTH, T., PATEL, D. N., SCHMITT, K., NOKES, J. P. (2017). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. In: Additive Manufacturing, Vol. 13, pp. 71-80, https://doi.org/10.1016/j.addma.2016.11.007 Go to original source...
  17. KAPLUN, B. W., ZHOU, R., JONES, K. W., DUNN, M. L., YAKACKI, C. M. (2020). Influence of orientation on mechanical properties for high-performance fused filament fabricated ultem 9085 and electro-statically dissipative polyetherketoneketone. In: Additive Manufacturing, Vol. 36, pp. 101527, https://doi.org/10.1016/j.addma.2020.101527 Go to original source...
  18. SOOD, A. K., OHDAR, R. K., MAHAPATRA, S. S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. In: Materials & Design, Vol. 31, No. 1, pp. 287-295, https://doi.org/10.1016/j.matdes.2009.06.016 Go to original source...
  19. DVORAK, K., ZARYBNICKA, L., DVORAKOVA, J. (2019). Quality Parameters of 3D Print Products by the DMLS Method. In: Manufacturing Technology, Vol. 19, No. 2. DOI: 10.21062/ujep/271.2019/a/1213-2489/MT/19/2/209 Go to original source...
  20. CMOREJ, T., PANDA, A., BARON, P., POOR, P., POLLAK, M. (2017). Surface finishing of 3D printed sample manufactured by fused deposition modelling. In: MM Science Journal, Vol. 11, pp. 1981-1985, https://doi.org/10.17973/MMSJ.2017_12_201753 Go to original source...
  21. POVOLNÁ, L., ŠVARCOVÁ, J. (2017). The macroeconomic context of investments in the field of machine tools in the Czech Republic. In: Journal of Competitiveness, Vol. 9., No. 2, pp. 110-122, https://doi.org/10.7441/joc.2017.02.08 Go to original source...
  22. PÍŠKA, M. (2009). Special Machining Technologies [Speciální technologie obrábění]. Akademické nakladatelství CERM, Brno. ISBN 978-802-1440-258
  23. CHUA, C. K., LEONG, K. F., LIM, C. S. (2010). Rapid prototyping: principles and applications. World Scientific Publishing Company, pp. 165-171 Go to original source...
  24. 3D-tisk.cz. (20113). Selective Laser Sintering. [online]. [cit. 2020-01-15]. Dostupné z https://www.3d-tisk.cz/selective-laser-sintering/
  25. KROTKÝ, J., HONZÍKOVÁ, J., MOC, P. (2016). Deformation of Print PLA Material Depending on the Temperature of Reheating Printing Pad. In: Manufacturing Technology, Vol. 16. No. 1. Go to original source...
  26. JOSKA, Z., ANDRÉS, L., DRAŽAN, T., MAŇAS, K., POKORNÝ, Z., SEDLÁK, J. (2021). Influence of the shape of the filling on the mechanical properties of samples made by 3D printing. In: Manufacturing Technology, Vol. 21, No. 2. DOI: 10.21062/mft.2021.024 Go to original source...
  27. PERNICA, J., SUSTR, M., DOSTAL, P., BRABEC, M., DOBROCKY, D. (2021). Tensile Testing of 3D Printed Materials Made by Different Temperature. In: Manufacturing Technology, Vol. 21. No.3. DOI: 10.21062/mft.2021.039 Go to original source...
  28. Materialpro3d.cz.: 3D Printing in a Nutshell [3D tisk v kostce]. [online]. [cit. 2020-01-16]. Dostupné z https://www.materialpro3d.cz/3d-tisk-v-kostce/?gclid=Cj0KCQiAmZDxBRDIARIsABnkbYQXqkCqyexroUZION1deRGrUKRBONg_JlmKggYJRGEfEmLzrVYs9FcaAvweEALw_wcB
  29. CHOTĚBORSKÝ, R. (2011). Material Classes [Nauka o materiálu]. Česká zemědělská univerzita, Praha. ISBN 978-80-213-2236-3
  30. Ústav fyziky a materiálového inženýrství. Short-term Statistical Exams [Statické zkoušky krátkodobé]. [online]. [cit. 2020-01-16]. Dostupné z http://ufmi.ft.utb.cz/texty/kzm/KZM_09.pdf
  31. PTÁČEK, L. (2003). Material Classes I [Nauka o materiálu I]- Akademické nakladatelství CERM, Brno. p. 516, ISBN 80-720-4283-1
  32. POSPÍCHAL, M., HRUBÝ, V., DVOŘÁK, I., OULEHLA, J., KADLEC, J., BÁRTÍK, L. (2002). Fundamentals of Material Classes IV: Experimental Methods [Základy nauky o materiálu IV: Experimentální metody]. Vojenská akademie, Brno.
  33. SOBOTOVÁ, J. (2014). Material Classes I. and II. [Nauka o materiálu I. a II.]. České vysoké učení technické, Praha. ISBN 978-80-01-05550-2
  34. MORAVČÍK, R., ČIČKA, R., HAZLINGER, M., HVIZDOŠ, P., JANOVEC, J. (2015). Introduction to Material Engineering I [Úvod do materiálového inžinierstva I]. STU, Bratislava. p. 374, ISBN 978-80-227-4405-8
  35. MACHEK, V. (2014). Metal Materials 2: Attributes and Testing of Metal Materials [Kovové materiály 2: vlastnosti a zkoušení kovových materiálů]. České vysoké učení technické, Praha. ISBN 978-80-01-05527-4
  36. SKÁLOVÁ, J., KOVAŘÍK, R., BENEDIKT, V. (2005). Basic Tests of Metal Materials [Základní zkoušky kovových materiálů]. Západočeská univerzita, Plzeň. ISBN 80-704-3417-1
  37. BĚHÁLEK, L. (2016). Polymery. [online]. [cit. 2020-03-06]. Dostupné z https://publi.cz/books/180/Cover.html, ISBN 978-80-88058-68-7
  38. JANČÁŘ, J., NEZBEDOVÁ, E. (2007). Testing of Plastic Materials [Zkoušení plastů]. Vysoké učení technické, Brno. ISBN 978-80-214-3452-3
  39. Ústav fyziky a materiálového inženýrství. Identification Testing of Polymers [Identifikační zkoušky polymerů]. [online]. [cit. 2020-04-01]. Dostupné z http://ufmi.ft.utb.cz/texty/kzm/KZM_05.pdf
  40. Český normalizační institut. (2003). ČSN EN ISO 2039-1: Plastics - Hardness Determination - Part 1: Method of Ball Press [ČSN EN ISO 2039-1: Plasty - Stanovení tvrdosti - Část 1: Metoda vtlačením kuličky]. Praha.
  41. ZEMAN, L. (2018). Plastic Injection: Theory and Practice [Vstřikování plastů: Teorie a praxe]. Grada Publishing, Praha. ISBN 978-802-4728-186
  42. Plasty Mladeč. Technical Documentation: ABS Filament [Technická dokumentace: ABS Filament]. [online]. [cit. 2020-08-22]. Dostupné z https://www.filament-pm.cz/data/files/TDS_ABS_CZECH.pdf
  43. Devil Desing. TME Electronic Components, ABS+ filament. [online]. [cit. 2020-08-21]. Dostupné z https://www.tme.eu/Document/b55e1a492c54ddec557d9f45c72c49e6/DEV-ABS-EN.pdf
  44. Plasty Mladeč. Technical Documentation: PC/ABS Filament [Technická dokumentace: PC/ABS Filament]. [online]. [cit. 2020-08-22]. Dostupné z https://www.filament-pm.cz/data/files/TDS_PCABS_CZECH.pdf
  45. Devil Design. ASA filament for 3D printing. [online]. [cit. 2020-08-23]. Dostupné z https://www.tme.eu/Document/e3eb4c3293e24f4231e739b90abfee48/DEV-ASA-EN.pdf
  46. Plasty Mladeč. Technical Documentation: ASA Filament [Technická dokumentace: ASA Filamen]. [online]. [cit. 2020-08-22]. Dostupné z https://www.filament-pm.cz/data/files/TDS_ASA_CZECH_1.pdf
  47. Fillamentum addi(c)tive polymers. Datasheet: ASA Extrafill. [online]. [cit. 2020-08-23]. Dostupné z https://www.dropbox.com/sh/e4e74tm1hjqw02n/AACSo_U5jkcvJR1e5l4Inu8oa?dl=0≺eview=Technical+Data+Sheet_ASA+Extrafill_03012019.pdf
  48. Plasty Mladeč. Technical Documentation: PETG Filament [Technická dokumentace: PETG Filament] [online]. [cit. 2020-08-22]. Dostupné z https://www.filament-pm.cz/data/files/TDS_PETG_CZECH_1.pdf
  49. Prusa Research. Technical Data Sheet: Prusament PETG from Prusa Polymers [Technický list: Prusament PETG od Prusa Polymers], [online]. [cit. 2020-08-17]. Dostupné z https://shop.prusa3d.com/fotky/PETG_TechSheet_CZE.pdf
  50. Spectrum Group. (2019). Technical Data Sheet: Spectrum Filaments Basic PET-G. [online]. [cit. 2020-08-17]. Dostupné z https://en.spectrumfilaments.com/data/include/cms/Basic_PET-G_-_TDS_EN.pdf
  51. Plasty Mladeč. Technical Documentation: PLA Filament [Technická dokumentace: PLA Filament]. [online]. [cit. 2020-08-22]. Dostupné z https://www.filament-pm.cz/data/files/TDS_PLA_CZECH.pdf
  52. Fillamentum addi(c)tive polymers. Datasheet: PLA Extrafill. [online]. [cit. 2020-08-18]. Dostupné z https://www.dropbox.com/sh/93ijxvlrp6bi2tj/AAAkdLzIumTXNz_cZKK_6wS6a?dl=0≺eview=Technical+Data+Sheet_PLA+Extrafill_03012019.pdf
  53. Prusa Research. Technical Data Sheet: Prusament PLA from Prusa Polymers [Technický list: Prusament PLA od Prusa Polymers]. [online]. [cit. 2020-08-25]. Dostupné z https://shop.prusa3d.com/fotky/PLA_TechSheet_CZE.pdf
  54. 3DXTech Additive Manufacturing. Technical Data Sheet: 3DXSTAT™ ESD-PLA 3D Printing Filament. [online]. [cit. 2020-08-28]. Dostupné z https://www.3dxtech.com/content/ESD_PLA_v3.pdf
  55. Úřad pro technickou normalizaci. (2012). ČSN EN ISO 527-1: Plastics - Determination of Traction Attributes: Part 1: General Principles [ČSN EN ISO 527-1: Plasty - Stanovení tahových vlastností: Část 1: Obecné principy]. Praha.
  56. Český normalizační institut. (2018). ČSN EN ISO 527-2: Plastics - Determination of Traction Attributes: Part 2: Testing Conditions for Moulded Plastics [ČSN EN ISO 527-2: Plasty - Stanovení tahových vlastností: Část 2: Zkušební podmínky pro tvářené plasty]. Praha.

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.