Manufacturing Technology 2023, 23(2):216-224 | DOI: 10.21062/mft.2023.010
Challenges in Tensile Testing of Thermoplastic Composites Reinforced with Chopped Carbon Fibre Produced by Fused Filament Fabrication Method
- Faculty of Mechanical Engineering, University of Žilina. Univerzitná 8215/1, 010 26 Žilina. Slovak Republic
Additive manufacturing is a relatively new technology that has recently undergone noticeable develop-ment, which includes several types of technologies based on the gradual deposition of material in layers. The most widespread method is Fused Filament Fabrication, which belongs to an extrusion technique. The typical feature of extrusion methods is material deposition in the filaments form. Therefore, printer users cannot apply the same approach to products as with conventional technologies. The authors of the paper have been working with the mentioned technology for several years. The primary goal of the research is the investigation how printing parameters affect the mechanical properties of laminates reinforced with chopped carbon fibres. Based on experience and knowledge, the authors report in this article the most common challenges encountered in the preparation process of specimens for tensile testing. This knowledge can also help ordinary users of 3D printers, who also face these challenges without being aware of the impact of these pitfalls on mechanical properties.
Keywords: Tensile testing, Additive manufacturing, Fused Filament Fabrication, Chopped carbon fiber
Grants and funding:
This publication is the result of support under the Operational Program Integrated Infrastructure for the project: Strategic implementation of additive technologies to strengthen the intervention capacities caused by the COVID-19 pandemic, ITMS code: 313011ASY4, co-financed by the European Regional Development Fund
Received: January 6, 2023; Revised: March 28, 2023; Accepted: April 6, 2023; Prepublished online: April 25, 2023; Published: May 4, 2023 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- HALEEM, A., JAVAID, M. (2019). Additive Manufacturing Applications in Industry 4.0: A Review. In: J. Ind. Integr. Manag., Vol. 4, No. 4, pp. 1 - 23. 1930001.
Go to original source...
- https://doi.org/10.1142/S2424862219300011
Go to original source...
- [2] GOH, G.D., YAP, Y.L., AGARWALA, S., YEONG, W.Y. (2019). Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv. Mater. Technol., Vol. 4, pp. 1-22. https://doi.org/10.1002/admt.201800271
Go to original source...
- [3] GOH, G.D., DIKSHIT, V., NAGALINGAM, A.P., GOH, G.L., AGARWALA, S., SING, S.L., WEI, J., YEONG, W.Y. (2018). Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater. Des., Vol. 137, pp. 79-89. https://doi.org/10.1016/j.matdes.2017.10.021
Go to original source...
- [4] KHALID, M.Y.; Al RASHID, A.; ARIF, Z.U.; AHMED, W.; ARSHAD, H.; ZAIDI, A.A. (2021). Natural fiber reinforced composites: Sustainable materials for emerging applications. Results Eng., Vol. 11, pp. 1-12. https://doi.org/10.1016/j.rineng.2021.100263
Go to original source...
- [5] JONES, R.M. (1999). Mechanics of Composite Materials, 2nd ed. Taylor & Francis Group: New York, NY, USA. ISBN 978-1-5603-2712-7
- [6] STEPASHKIN, A.A.; MOHAMMAD, H.; MAKAROVA, E.D.; ODINTSOVA, Y.V.; LAPTEV, A.I.; TCHERDYNTSEV, V.V. Deformation Behavior of Single Carbon Fibers Impregnated with Polysulfone by Polymer Solution Method. Polymers 2023, 15, 570. https://doi.org/10.3390/polym15030570
Go to original source...
- [7] BURAGOHAIN, M.K. (2017). Composite Structures-Design, Mechanics, Analysis, Manufacturing and Testing. CRC Press: Boca Raton, FL, USA, p. 761. ISBN 978-1-1387-4667-1.
Go to original source...
- [8] BARBERO, J.E. (2014). Finite Element Analysis of Composite Materials Using ANSYS®, 2nd ed. CRC Press: Boca Raton, FL, USA, 2014; p. 366. ISBN 978-1-4665-1690-8.
- [9] VAJDOVÁ, I., JENČOVÁ, E., SZABO, S. Jr., MELNÍKOVÁ, L., GALANDA, J., DOBROWOLSKA, M., PLOCH, J. (2019). Environmental Impact of Burning Composite Materials Used in Aircraft Con-struction on the Air. Int. J. Environ. Res. Public Health. Vol.16, No. 20. https://doi.org/10.3390/ijerph16204008
Go to original source...
- [10] NOH, Y., ODIMAYOMI, T., TEIMOURI-SENDESI, S.-M., YOUNGBLOOD, J. P., WHELTON, S. J. (2022). Environmental and human health risks of plastic composites can be reduced by optimizing manufacturing conditions, Journal of Cleaner Production, Vol. 356. https://doi.org/10.1016/j.jclepro.2022.131803
Go to original source...
- [11] ŠOFER, M., CIENCIALA, J., FUSEK, M., PAVLÍČEK, P., MORAVEC, R., 2021. Damage Analysis of Composite CFRP Tubes Using Acoustic Emission Monitoring and Pattern Recognition Approach. Mate-rials 14, 1-16.
Go to original source...
- [12] LAWRENCE, M. J., HSIAO, K.-T., DON, R. C., SIMACEK, P., ESTRADA, G., MURAT SOZER, E., STADTFELD, H. C., ADVANI, S. G. (2002). An approach to couple mold design and on-line control to manufacture complex composite parts by resin transfer molding, Composites Part A: Applied Science and Manufacturing, Vol. 33, No. 7, pp. 981-990, ISSN 1359-835X, https://doi.org/10.1016/S1359-835X(02)00043-X
Go to original source...
- [13] MALLICK, P. K. (2021). Materials, Design and Manufacturing for Lightweight Vehicles (Second Edition). Woodhead Publishing, p. 471. ISBN 978-0-1281-8712-8.
- [14] FORMLABS. Guide to Compression Molding From Prototyping to Mass Production. Available at: https://formlabs.com/blog/compression-molding/ [Accessed 20-th January 2023]
- [15] ZHANG, W., COTTON, CH., SUN, J., HEIDER, D., GU, B., SUN, B., CHOU, T.-W. Interfacial bonding strength of short carbon fiber/acrylonitrile-butadiene-styrene composites fabricated by fused deposition modelling. Composites Part B: Engineering, Vol. 137, pp. 51-59, https://doi.org/10.1016/j.compositesb.2017.11.018.
Go to original source...
- [16] LOVE, L.J., KUNC, V., RIOS, O., DUTY, CH. E., ELLIOTT, A. M., POST, B. K., SMITH, R. J., BLUE, C. A. (2014). The importance of carbon fiber to polymer additive manufacturing. Journal of Materials Research, Vol. 29, pp. 1893-1898. https://doi.org/10.1557/jmr.2014.212
Go to original source...
- [17] ROJEK, I., MIKOŁAJEWSKI, D., DOSTATNI, E., MACKO, M., 2020. AI-Optimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications. Materials 13, 1-19.
Go to original source...
- [18] XIONGHAO, L., ZHONGJIN, N., SHUYANG, B., BAIYANG, L. (2018). Preparation and Mechanical Properties of Fiber Reinforced PLA for 3D Printing Materials. IOP Conf. Ser.: Mater. Sci. Eng., Vol. 322, No. 2, DOI: 10.1088/1757-899X/322/2/022012.
Go to original source...
- [19] JING, W., HUI, CH., QIONG, W., HONGBO, L., ZHANJUN, L. (2017). Surface modification of car-bon fibers and the selective laser sintering of modified carbon fiber/nylon 12 composite powder. Materials and Design, Vol. 116, pp. 253-260. ISSN 0264-1275. https://doi.org/10.1016/j.matdes.2016.12.037.
Go to original source...
- [20] SALAZAR, A., RICO, A., RODRÍGUEZ, J., SEGURADO ESCUDERO, J., SELTZER, R., MARTIN DE LA ESCALERA CUTILLAS, F. (2014). Fatigue crack growth of SLS polyamide 12: Effect of reinforcement and temperature. Composites Part B: Engineering, Vol. 59, pp. 285-292. ISSN 1359-8368. https://doi.org/10.1016/j.compositesb.2013.12.017.
Go to original source...
- [21] KRAWIEC, P., CZARNECKA-KOMOROWSKA, D., WARGUŁA, Ł., WOJCIECHOWSKI, S., 2021. Geometric Specification of Non-Circular Pulleys Made with Various Additive Manufacturing Tech-niques. Materials 14, pp. 1-15.
Go to original source...
- [22] MARSALEK, P., SOTOLA, M., RYBANSKY, D., REPA, V., HALAMA, R., FUSEK, M., PROKOP, J., 2021. Modeling and Testing of Flexible Structures with Selected Planar Patterns Used in Biomedical Applications. Materials 14, pp. 1-16.
Go to original source...
- [23] CHAPIRO, M. (2016). Current achievements and future outlook for composites in 3D printing. Reinforced Plastics, Vol. 60, No. 6, pp. 372-375, ISSN 0034-3617,https://doi.org/10.1016/j.repl.2016.10.002.
Go to original source...
- [24] CHIU, S.-H., WICAKSONO, S.T., CHEN, K.-T., CHEN, C.-Y., PONG, S.-H. (2015), Mechanical and thermal properties of photopolymer/CB (carbon black) nanocomposite for rapid prototyping. Rapid Prototyping Journal, Vol. 21, No. 3, pp. 262-269. https://doi.org/10.1108/RPJ-11-2011-0124
Go to original source...
- [25] LU, Z. L., LU, F., CAO, J. W., LI, D. C. (2014). Manufacturing Properties of Turbine Blades of Carbon Fiber-Reinforced SiC Composite Based on Stereolithography. Materials and Manufacturing Processes, Vol. 29, No. 2., pp. 201 - 209. DOI: https://doi.org/10.1080/10426914.2013.872269
Go to original source...
- [26] DAMINABO, S. C., GOEL, S., GRAMMATIKOS, S. A., NEZHAD, H. Y., THAKUR, V. K. (2020). Fused deposition modelling-based additive manufacturing (3D printing): techniques for polymer material system. Mater Today Chem, Vol. 16, pp. 1 - 23. DOI: https://doi.org/10.1016/j.mtchem.2020.100248
Go to original source...
- [27] TURNER, B.N., GOLD, S.A. (2015). A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, Vol. 21 No. 3, pp. 250-261. https://doi.org/10.1108/RPJ-02-2013-0017
Go to original source...
- [28] TIMKO, P., CZÁNOVÁ, T., CZÁN, A., SLABEJOVÁ, S., HOLUBJAK, J., CEDZO, M. (2022). Analysis of Parameters of Sintered Metal Components Created by ADAM and SLM Technologies. Manufacturing Technology, Vol. 22, No. 3, pp. 347-355. doi: 10.21062/mft.2022.032
Go to original source...
- [29] FABIAN, M., HUŇADY, R., KUPEC, F. (2022). Reverse Engineering and Rapid Prototyping in the Process of Developing Prototypes of Automotive Parts. Manufacturing Technology, 22(6), 669-678. doi: 10.21062/mft.2022.084
Go to original source...
- [30] SEDLAK J, JOSKA Z, HRBACKOVA L, JURICKOVA E, HRUSECKA D, HORAK O. (2022). Determination of Mechanical Properties of Plastic Components Made by 3D Printing. Manufacturing Technology, Vol. 22, No. 6, pp. 733-746. doi: 10.21062/mft.2022.082.
Go to original source...
- [31] TURNER, B.N., STRONG, R., GOLD, S.A. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J., Vol. 20, No. 3, pp. 192-204. https://doi.org/10.1108/RPJ-01-2013-0012
Go to original source...
- [32] SGRULLETTI, M., BRAGAGLIA, M., GIARNETTI, S., PALEARI, L., NANNI, F. (2021). Understanding the impact of Fused Filament Fabrication conditions on the microstructure and tensile properties of polyamide 6 by thermal and optical live monitoring. Materials Today Communications, Vol. 28, https://doi.org/10.1016/j.mtcomm.2021.102679.
Go to original source...
- [33] ASTM International, (2014). ASTM D638-14, Standard Test Method for Tensile Properties of Plastics. Available online: www.astm.org
- [34] MAJKO, J., VAŠKO, M., HANDRIK, M., SÁGA, M. (2022). Tensile Properties of Additively Manufac-tured Thermoplastic Composites Reinforced with Chopped Carbon Fibre. Materials, Vol. 15, pp. 1 - 25. https://doi.org/10.3390/ma15124224
Go to original source...
- [35] BARBERO, J. E. (2017). Introduction to Composite Materials Design, 3rd ed.; CRC Press: Boca Raton, FL, USA, p. 366. ISBN 978-1-1381-9680-3.
- [36] VAN DER KLIFT, F., KOGA, Y., TODOROKI, A., UEDA, M., HIRANO, Y., MATSUZAKI, R. (2016). 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens. Open J. Compos. Mater., Vol. 6, pp. 18-27.
Go to original source...
- [37] BÁRNIK, F., VAŠKO, M., HANDRIK, M., DORČIAK, F., MAJKO, J. (2019). Comparing mechanical properties of composite structures on Onyx base with different density and shape of fill. Transportation Reseach Procedia, Vol. 40, pp. 616 - 622. https://doi.org/10.1016/j.trpro.2019.07.088
Go to original source...
- [38] JOSKA, Z., ANDRÉS, L., DRAŽAN, T., MAŇAS, K., POKORNÝ, Z., SEDLÁK, J. (2021). Influence of the shape of the filling on the mechanical properties of samples made by 3D printing. Manufacturing Technology, Vol. 21, No. 2, pp. 200-206. doi: 10.21062/mft.2021.024
Go to original source...
- [39] MAJKO, J., HANDRIK, M., VAŠKO, M., SÁGA, M., KOPAS, P., DORČIAK, P., SAPIETOVÁ, A. (2023). Influence of a directional dependenceon mechanical properties of composites reinforced with chopped carbon fibre produced by additive manufacturing. Arch. Metall. Mater., Vol. 68, No. 2, pp. 455 - 461. (in press)
Go to original source...
- [40] SOMIREDDY, M., CZEKANSKI, A. (2020). Anisotropic material behavior of 3D printed composite structures-material extrusion additive manufacturing. Materials and Design, Vol. 195, pp. 1 - 12. https://doi.org/10.1016/j.matdes.2020.108953
Go to original source...
- [41] GAO, X., QI, S., KUANG, X., SU, Y., LI, J., WANG, D. (2021). Fused filament fabrication of polymer materials: a review of interlayer bond. Addit Manuf., Vol. 37. https://doi.org/10.1016/j.addma.2020.101658
Go to original source...
- [42] RAVOORI, D., SALVI, S., PRAJAPATI, H., QASAIMEH, M., ADNAN, A., JAIN, A. (2021). Void re-duction in fused filament fabrication (FFF) through in situ nozzle-integrated compression rolling of de-posited filaments. Virtual and Physical Prototyping, Vol. 16, No. 2, pp. 146 - 159. https://doi.org/10.1080/17452759.2021.1890986
Go to original source...
- [43] GHORBANI, J., KOIRALA, P., SHEN, Y.-L., TEHRANI, M. (2022). Eliminating voids and reducing mechanical anisotropy in fused filament fabrication parts by adjusting the filament extrusion rate. Journal of Manufacturing Processes, Vol. 80, 2022, pp. 651-658. ISSN 1526-6125. https://doi.org/10.1016/j.jmapro.2022.06.026.
Go to original source...
- [44] TAO, Y., KONG, F., LI, Z., ZHANG, J., ZHAO, X., YIN, Q., XING, D., LI, P. (2021). A review on voids of 3D printed parts by fused filament fabrication. Journal of Materials Research and Technology, Vol. 15, pp. 4860-4879. https://doi.org/10.1016/j.jmrt.2021.10.108.
Go to original source...
- [45] CHOWDHURY, S. N.; CHANDER PRAKASH, Y.; RAMAKRISHNA, S.; DIXIT, S.; GUPTA, L. R.; BUDDHI, D. (2022). Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. Journal of Materials Research and Technology, Vol. 20., pp. 2109 - 2172. https://doi.org/10.1016/j.jmrt.2022.07.121
Go to original source...
- [46] HUMEAU, C., DAVIES, P., LEGAC, P. Y., JACQUEMIN, F. (2018). Influence of water on the short and long term mechanical behaviour of polyamide 6 (nylon) fibres and yarns. Multiscale and Multidiscip. Model. Exp. and Des., Vol. 1, pp.317-327. https://doi.org/10.1007/s41939-018-0036-6.
Go to original source...
- [47] BROWN, B. (2021). Identifying and Preventing Wet Markforged Material. Available at: https://hawkridgesys.com/blog/identifying-and-preventing-wet-markforged-material (Accessed at: 20th January 2023)
- [48] MAJKO, J., VAŠKO, M., HANDRIK, M., GAVLAS, M., NOVÝ, F. (2023). Effect of Printing Parame-ters on the Tensile Properties of Improperly Stored Chopped Carbon Fibres Reinforced Nylon. Procedia Structural Integrity. (in review process)
- [49] SRIDHAR, A., ADUSUMALLI, R. B., DODDIPATLA, P., VENKATESHAN, K. CH. (2021). Compar-ative study between dry and wet properties of thermoplastic PA6/PP novel matrix-based carbon fibre composites. Science and Engineering of Composite Materials, Vol. 28, No. 1, pp. 579-591. https://doi.org/10.1515/secm-2021-0056
Go to original source...
- [50] ANDRÉ, J.C. (2017). From Additive Manufacturing to 3D/4D Printing. 1st ed. ISTE Ltd.: London, UK, p. 344. ISBN 978-1-78630-119-2.
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.