Manufacturing Technology 2023, 23(2):186-193 | DOI: 10.21062/mft.2023.018

Influence of Structural State prior Quenching in Spring Steel

Jakub Kotous ORCID..., Pavel Salvetr ORCID..., Daniela Nacházelová ORCID...
COMTES FHT a.s., Prumyslova 995, 334 41 Dobrany. Czech Republic

Various structure states before quenching significantly influence final mechanical properties as well as the dispersion of chemical composition at the same steel grade. Therefore heat treatment with mechanical properties is specified in the technical delivery conditions. Even if the heat treatment is determined, different mechanical properties can be achieved. These differences are increasing in im-portance in high-strength applications like springs, cutting tools, safety, and load-bearing parts of automotive design et al. Because it has a direct impact on their lifetime. The structure consists of ferrite and cementite after spheroidization annealing prior quenching process. The cementite could be observed in various shapes, e.g. fine and large globular particles or the rest of the disintegrated lamellar shape. This article shows how these cementite morphologies affect the quenching behavior and final mechanical properties in high-strength spring steel 54SiCr6.

Keywords: Accelerated Spheroidization, ASR, Quenching, Spring steel, 54SiCr6
Grants and funding:

The result was supported by ERDF Research of advanced steels with unique properties, No. CZ02.1.01/0.0/0.0/16_019/000083

Received: December 9, 2022; Revised: March 29, 2023; Accepted: April 11, 2023; Prepublished online: April 25, 2023; Published: May 4, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kotous J, Salvetr P, Nacházelová D. Influence of Structural State prior Quenching in Spring Steel. Manufacturing Technology. 2023;23(2):186-193. doi: 10.21062/mft.2023.018.
Download citation

References

  1. JANDA, T. (2018). Use of metallographic analysis for evaluating microstructures in quenched and tempered high-strength steel. In: Manufacturing Technology, Vol. 18. No.1, pp. 47-52, ISSN 12132489. Go to original source...
  2. ESTERL, R., SONNLEITNER, M., WEISSENSTEINER, I., HARTL, K. and SCHNITZER, R. (2019). Influence of quenching conditions on texture and mechanical properties of ultra-high-strength steels. In: Journal of Materials Science, Vol. 54, No. 19, pp. 12875-12886, ISSN 15734803. Go to original source...
  3. WU, H.Y., HAN, D.X., DU, Y., GAO, X.H. and DU, L.X. (2022). Effect of initial spheroidizing micro-structure after quenching and tempering on wear and contact fatigue properties of GCr15 bearing steel. In: Materials Today Communications, Vol. 30, ISSN 2352-4928. Go to original source...
  4. KIM, K.H., PARK, S.D., KIM, J.H. and BAE, C.M. (2012). Role of spheroidized carbides on the fatigue life of bearing steel. In: Metals and Materials International, Vol. 18, No. 6, pp. 917-921, ISSN 20054149. Go to original source...
  5. JENÍČEK, Š., OPATOVÁ, K., HAJŠMAN, J. and VOREL, I. (2022). Evolution of Mechanical Proper-ties and Microstructure in Q&P Processed Unconventional Medium-Carbon Silicon Steel and Compari-son between Q&P Processing, Quenching and Tempering, and Austemperingfor. In: Manufacturing Tech-nology, Vol. 22, No. 2, pp. 146-155, ISSN 12132489. Go to original source...
  6. MAJI, S., SUBHANI, A.R., SHOW, B.K. and MAITY, J. (2017). Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectoid Steel Under Cyclic Heat Treatment. In: Journal of Materials Engineering and Performance, Vol. 26, No. 7, pp. 3058-3070, ISSN 15441024. Go to original source...
  7. HARISHA, S.R., SHARMA, S., KINI, U.A. and GOWRI SHANKAR, M.C. (2018). Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels. In: MATEC Web of Conferences, Vol. 144, pp. 1-10, ISSN 2261236X. Go to original source...
  8. PANDIT, A.S. and BHADESHIA, H.K.D.H. (2011). Diffusion-controlled growth of pearlite in ternary steels. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 467, No. 2134, pp. 2948-2961, ISSN 14712946. Go to original source...
  9. SALVETR, P., NOVÝ, Z., GOKHMAN, A., KOTOUS, J., ZMEKO, J., MOTYČKA, P. and DLOUHÝ, J. (2020). Influence of Si and Cu Content on Tempering and Properties of 54SiCr6 Steel. In: Manufacturing Technology, Vol. 20, No. 4, pp. 516-520, ISSN 12132489. Go to original source...
  10. MESQUITA, R.A., BARBOSA, C.A., MORALES, E. V. and KESTENBACH, H.J. (2011). Effect of silicon on carbide precipitation after tempering of H11 hot work steels. In: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 42, No. 2, p. 461-472, ISSN 10735623. Go to original source...
  11. SAHA, A., MONDAL, D.K. and MAITY, J. (2011). An alternate approach to accelerated spheroidization in steel by cyclic annealing. In: Journal of Materials Engineering and Performance, Vol. 20, No. 1, pp. 114-119, ISSN 10599495. Go to original source...
  12. MAITY, J., SAHA, A., MONDAL, D.K. and BISWAS, K. (2013). Mechanism of accelerated spheroidization of steel during cyclic heat treatment around the upper critical temperature. In: Philosophical Magazine Letters, Vol. 93, No. 4, pp. 231-237, ISSN 09500839. Go to original source...
  13. VERHOEVEN, J.D. and GIBSON, E.D. (1998). The divorced eutectoid transformation in steel. In: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 29, No. 4, pp. 1181-1189, ISSN 10735623. Go to original source...
  14. TIAN, Y.L. and KRAFT, R.W. (1987). Mechanisms of Pearlite Spheroidization. In: Metallurgical Transactions, Vol. 18A, pp. 1403-1414. Go to original source...
  15. HAUSEROVÁ, D., DLOUHÝ, J. and KOTOUS, J. (2017). Structure Refinement of Spring Steel 51CrV4 after Accelerated Spheroidisation. In: Archives of Metallurgy and Materials, Vol. 62, No. 3, pp. 1473-1477, ISSN 17333490. Go to original source...
  16. DLOUHY, J., HAUSEROVA, D. and NOVY, Z. (2016). Influence of the carbide-particle spheroidisa-tion process on the microstructure after the quenching and annealing of 100CrMnSi6-4 bearing steel. In: Materiali in Tehnologije, Vol. 50, No. 1, pp. 159-162, ISSN 15803414. Go to original source...
  17. JIRKOVA, H., HAUSEROVA, D., KUCEROVA, L. and MASEK, B. (2013). Energy- and time-saving low-temperature thermomechanical treatment of low-carbon plain steel. In: Materiali in Tehnologije, Vol. 47, No. 3, pp. 335-339, ISSN 15802949.
  18. DLOUHY, J., HAUSEROVA, D. and NOVY, Z. (2015). Carbide morphology and ferrite grain size after accelerated carbide spheroidisation and refinement (ASR) of C45 steel. In: Materiali in Tehnologije, Vol. 49, No. 4, pp. 625-628, ISSN 15803414. Go to original source...
  19. HAUSEROVA, D., DLOUHY, J. and KOVER, M. (2017). Pearlitic Lamellae Spheroidisation During Austenitization and Subsequent Temperature Hold. In: Archives of Metallurgy and Materials, Vol. 62, No. 1, pp. 201-204, ISSN 17333490. Go to original source...
  20. BHADESHIA, H.K.D.H. (2012). Steels for bearings. In: Progress in Materials Science, Vol. 57, No. 2, pp. 268-435, ISSN 00796425. Go to original source...
  21. Úřad pro technickou normalizaci, metrologii a státní zkušebnictví (2018). ČSN EN ISO 6507-1. Kovové materiály - Zkouška tvrdosti podle Vickerse - Část 1: Zkušební metoda. Praha, pp. 1-32, Třídicí znak 42 0374.
  22. Úřad pro technickou normalizaci, metrologii a státní zkušebnictví (2021). ČSN EN ISO 6892-1. Kovové materiály - Zkoušení tahem - Část 1: Zkušební metoda za pokojové teploty. Praha, pp. 1-76, Třídicí znak 42 0310.

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.