Manufacturing Technology 2023, 23(4):468-474 | DOI: 10.21062/mft.2023.054

Identification of Residual Stresses after Machining a Gearwheel Made by Sintering Metal Powder

Peter Kozový ORCID..., Michal Šajgalík ORCID..., Mário Drbúl ORCID..., Jozef Holubják ORCID..., Jaromír Markovič ORCID..., Richard Joch ORCID..., Róbert Balšianka
Faculty of Mechanical Engineering, University of Žilina. Univerzitná 8215/1, 010 26 Žilina. Slovak Republic

SLS additive technology is an innovative method of metal components production, using a high material proportion. Currently, gearwheels are still one of the most used engineering parts, not only in the automotive, but also in other industries. For example, milling is used to reduce their weight, but the material can be distorted after this operation. The occurrence of cracks propagating in the transition region after induction hardening was the reason for conducting experiments with an alternative machining technology. The article deals with the identification of the influence of machining on residual stress change of a gearwheel made of sintered metal powder. The research focuses on the effect of boring on the residual stresses using a non-destructive measurement method using röntgene diffractometry.

Keywords: Additive Manufacturing, Selective Laser Sintering, Machining, Residual Stress
Grants and funding:

This article was funded by the University of Žilina project 313011ASY4 – "Strategic implementation of additive technologies to strengthen the intervention capacities of emergencies caused by the COVID-19 pandemic"

Received: March 17, 2023; Revised: July 13, 2023; Accepted: July 17, 2023; Prepublished online: July 18, 2023; Published: September 5, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kozový P, Šajgalík M, Drbúl M, Holubják J, Markovič J, Joch R, Balšianka R. Identification of Residual Stresses after Machining a Gearwheel Made by Sintering Metal Powder. Manufacturing Technology. 2023;23(4):468-474. doi: 10.21062/mft.2023.054.
Download citation

References

  1. GU, DD, MEINERS, W., WISSENBACH, K., POPRAWE, R. (2012) Review, Vol. 57, No. 3, pp. 133 - 164. International materials reviews, Nanjing, Peoples R China. DOI: 10.1179/1743280411Y.0000000014 Go to original source...
  2. KRUTH, J.-P., WANG, X., LAOUI, T. FROYEN, L. (2003). Article, Vol. 23, No. 4, pp. 357 - 371. Assembly Automation, Heverlee, Belgium. DOI: 10.1108/01445150310698652 Go to original source...
  3. SHAHZAD, K., DECKERS, J., ZHANG, Z., KRUTH, J.-P., VLEUGELS, J. (2013). Article, Vol. 34, No. 1, pp. 87 - 95. Journal of the European Ceramic Society, Heverlee, Belgium. DOI: 10.1016/j.jeurceramsoc.2013.07.023 Go to original source...
  4. DRBUL, M., CZÁN, A., ŠAJGALÍK, M., PIEŠOVÁ, M., STEPIEN, K. (2017). Influence of normal vectors on the accuracy of product's geometrical specification. Procedia engineering, 192, 119-123. DOI: 10.1016/j.proeng.2017.06.021 Go to original source...
  5. GOMBÁR, M., VAGASKÁ, A., HARNIČÁROVÁ, M., VALÍČEK, J., KUŠNEROVÁ, M., CZÁN, A., KMEC, J. (2019). Experimental analysis of the influence of factors acting on the layer thickness formed by anodic oxidation of aluminium. Coatings, 9(1), 57. DOI: 10.3390/coatings9010057 Go to original source...
  6. PIEŠOVÁ, M., CZÁN, A., ŠAJGALÍK, M., CZÁNOVÁ, T., ČEP, R. (2017). Experimental quantification of the austenitic phase in steels using the Average peak method of x-ray diffractometry. Procedia engineering, 192, 689-694. DOI: 10.1016/j.proeng.2017.06.119 Go to original source...
  7. KORYCKI, A., GARNIER, C., NASSIET, V., SULTAN, CT, CHABERT, F. (2022). Optimization of Mechanical Properties and Manufacturing Time through Experimental and Statistical Analysis of Process Parameters in Selective Laser Sintering. Advances in Materials Science and Engineering, 2022. DOI: 10.1155/2022/2526281 Go to original source...
  8. STICHEL, T., FRICK, T., LAUMER, T., TENNER, F., HAUSOTTE, T., MERKLEIN, M., SCHMIDT, M. (2017). A Round Robin study for Selective Laser Sintering of polyamide 12: Microstructural origin of the mechanical properties. Optics & Laser Technology, 89, 31-40. DOI: 10.1016/j.optlastec.2016.09.042 Go to original source...
  9. MERCELIS, P., KRUTH, JP (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid prototyping journal. DOI: 10.1108/13552540610707013 Go to original source...
  10. IMPEY, S., SAXENA, P., SALONITIS, K. (2021). Selective Laser Sintering Induced Residual Stresses: Precision Measurement and Prediction. Journal of Manufacturing and Materials Processing, 5(3), 101. DOI: 10.3390/jmmp5030101 Go to original source...
  11. B ARTLETT, JL, LI, X. (2019). An overview of residual stresses in metal powder bed fusion. Additive Manufacturing, 27, 131-149. DOI: 10.1016/j.addma.2019.02.020 Go to original source...
  12. EL MAGRI, A., BENCAID, SE, VANAEI, HR, VAUDREUIL, S. (2022). Effects of Laser Power and Hatch Orientation on Final Properties of PA12 Parts Produced by Selective Laser Sintering. Polymers, 14(17), 3674. DOI: 10.3390/polym14173674 Go to original source...
  13. ZÁRYBNICKÁ, L., PETRŮ, J., KRPEC, P., PAGÁČ, M. (2022). Effect of Additives and Print Orientation on the Properties of Laser Sintering-Printed Polyamide 12 Components. Polymers, 14(6), 1172. DOI: 10.3390/polym14061172 Go to original source...
  14. DEMBICZAK, T., BALAGA, Z., OPYDO, M., KRUZEL, R., GARBIEC, D., & DYNER, M. (2021). The effect of the binder phase and sintering temperature on the properties of Spark Plasma Sintering WC-Co cemented carbides. Manuf. Technol, 21, 45-50. DOI: 10.21062/mft.2021.002 Go to original source...
  15. PAVOL, T., TATIANA, C., ANDREJ, C., SILVIA, S., JOZEF, H., & MIROSLAV, C. (2022). Analysis of Parameters of Sintered Metal Components Created by ADAM and SLM Technologies. Manufacturing Technology, 22(4), 347-355. DOI: 10.21062/mft.2023.008 Go to original source...
  16. MATUŠ, M., BECHNÝ, V., JOCH, R., DRBÚL, M., HOLUBJÁK, J., CZÁN, A., NOVÁK, M., ŠAJGALÍK, M. (2023). Geometric Accuracy of Components Manufactured by SLS Technology Regarding the Orientation of the Model during 3D Printing. Manufacturing Technology, 23(2):233-240. DOI: 10.21062/mft.2023.027 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.