Manufacturing Technology 2023, 23(5):725-731 | DOI: 10.21062/mft.2023.067

Structural and Fractographic Analysis of Aluminum Alloy before and after Fatigue Loading

Milan Uhríčik ORCID..., Peter Palček ORCID..., Mária Chalupová ORCID..., Lenka Kuchariková ORCID..., Lucia Pastierovičová ORCID..., Denisa Medvecká ORCID..., Lenka Markovičová ORCID..., Róbert Balšianka, Alan Vaško ORCID...
Department of Materials Engineering, Faculty of Mechanical Engineering, University of Žilina. Univerzitná 8215/1, 01026 Žilina. Slovakia

The article deals with the analysis of the structure and fracture surface of aluminum alloy samples. Alu-minum alloy AlMg9 was used as an experimental material. The material from which the samples were made was supplied as cast without heat treatment, and specifically the material was produced by the continuous casting method. The structure of the test material was examined using a Neophot 32 optical microscope, and the fracture surface of the test sample was examined using a scanning electron microscope (SEM). The fatigue life of the aluminum alloy was tested by three-point bending cyclic loading using the parameters - frequency f = 100 Hz, temperature T = 22 ± 5 ℃ and stress ratio R = 0.11. The analysis showed that cast aluminum alloys are very sensitive to casting defects, such as porosity or the content and distribution of intermetallic phases. If large pores or phases are present on or near the surface of the sample, this can be the dominant cause of fatigue crack initiation and reduction of the fatigue lifetime.

Keywords: Aluminum Alloy, Fracture Surface, Structure, Fatigue, Bending Loading
Grants and funding:

The research was supported by the Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences, VEGA 01/0134/20, VEGA 01/0398/19, KEGA 016ŽU-4/2020, and projects to support young researchers at UNIZA, the ID of projects 14877 and 12715. This article was also funded by the University of Žilina project 313011ASY4 – “Strategic implementation of additive technologies to strengthen the intervention capacities of emergencies caused by the COVID-19 pandemic.”

Received: August 31, 2022; Revised: August 29, 2023; Accepted: September 1, 2023; Prepublished online: September 14, 2023; Published: December 6, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Uhríčik M, Palček P, Chalupová M, Kuchariková L, Pastierovičová L, Medvecká D, et al.. Structural and Fractographic Analysis of Aluminum Alloy before and after Fatigue Loading. Manufacturing Technology. 2023;23(5):725-731. doi: 10.21062/mft.2023.067.
Download citation

References

  1. SNOPIŃSKI, P., KRÓL, M., TAŃSKI, T., KRUPIŃSKA, B. (2018). Effect of cooling rate on microstructural development in alloy AlMg9. In: Journal of Thermal Analysis and Calorimetry, Vol. 133, pp. 379-390. ISSN 1388-6150 Go to original source...
  2. SNOPIŃSKI, P., TAŃSKI, T., KRZYSZTOF, L., RUSZ, S., JONSTA, P., KRÓL, M. (2016). Wrought aluminium-magnesium alloys subjected to SPD processing. In: International Journal of Materials Research, Vol. 107, pp. 637-645. ISSN 2195-8556 Go to original source...
  3. BRITO, C., REINHART, G., NGUYEN-THI, H., MANGELINCK-NOEL, N., CHEUNG, N., SPINELLI, J.E., GARCIA, A. (2015). High cooling rate cells, dendrites, microstructural spacing and microhardness in a directionally solidified Al-Mg-Si alloy. In: Journal of Alloys and Compounds, Vol. 636, pp. 145-149. ISSN 0925-8388 Go to original source...
  4. BRODARAC, Z.Z., UNKIĆ, F., MEDVED, J., MRVAR, P. (2012). Determination of solidification sequence of the AlMg9 alloy. In: Kovove Materialy, Vol. 50, No. 01, pp. 59-67. Slovak Republic. ISSN 1338-4252 Go to original source...
  5. VIDAL, C., BAPTISTA, R., INFANTE, V. (2018). Numerical simulations of the fatigue behaviour of a friction stirred channel aluminium alloy. In: MATEC Web of Conference, 165, 21008. eISSN 2261-236X Go to original source...
  6. CHENG, W., CHENG, H.S., MURA, T., KEER, L.M. (1994). Micromechanics modeling of crack initiation under contact fatigue. In: Journal of Tribology, Vol. 116, No. 1, pp. 2-8. ISSN 0742-4787 Go to original source...
  7. ZYCH, J., PIEKLO, J., MAJ, M., GARBACZ-KLEMPKA, A., PIEKOŚ, M. (2019). Influence of structural discontinuities on fatigue life of 4XXX0-series aluminum alloys. In: Archives of Metallurgy and Materials, Vol. 64, No. 2, pp. 765-771. ISSN1733-3490 Go to original source...
  8. UHRÍČIK, M., PALČEK, P., CHALUPOVÁ, M., FRKÁŇ, M. (2018). The influence of the structure on the fatigue properties of aluminium alloys for the casting. In: MATEC Web of Conference, 157, 07013. eISSN 2261-236X Go to original source...
  9. MIKOLAJČÍK, M., TILLOVÁ, E., KUCHARIKOVÁ, L., PASTIEROVIČOVÁ, L., CHALUPOVÁ, M., UHRÍČIK, M., ŠURDOVÁ, Z. (2022). Effect of higher iron content and manganese addition on the corrosion resistance of AlSi7Mg0.6 secondary alloy. In: Manufacturing Technology, Vol. 22, No. 4, pp. 436-443. UJEP. Czech Republic. ISSN 1213-2489. Go to original source...
  10. BELAN, J., UHRÍČIK, M., HANUSOVÁ, P., VAŠKO, A. (2020). The Ti6Al4V alloy microstructure modification via various cooling rates, its influence on hardness and microhardness. In: Manufacturing Technology, Vol. 20, No. 5, pp. 560-565. UJEP. Czech Republic. ISSN 1213-2489. Go to original source...
  11. ŠURDOVÁ, Z., KUCHARIKOVÁ, L., TILLOVÁ, E., PASTIEROVIČOVÁ, L., CHALUPOVÁ, M., UHRÍČIK, M., MIKOLAJČÍK, M. (2022). The influence of Fe content on corrosion resistance of secondary AlSi7Mg0.3 cast alloy with increased Fe-content. In: Manufacturing Technology, Vol. 22, No. 5, pp. 598-604. UJEP. Czech Republic. ISSN 1213-2489. Go to original source...
  12. BELAN, J., VAŠKO, A., KUCHARIKOVÁ, L., TILLOVÁ, E. (2018). The fractography analysis of IN718 alloy after three-point flexure fatigue test. In: MATEC Web of Conference, 157, 07001. eISSN 2261-236X. Go to original source...
  13. BELAN, J., KUCHARIKOVÁ, L., TILLOVÁ, E., CHALUPOVÁ, M. (2019). Three-point bending fatigue test of TiAl6V4 titanium alloy at room temperature. In: Advances in Materials Science and Engineering, 2019, 2842416. ISSN 1687-8434 Go to original source...
  14. BOYKO, V., LINK, T., MYKHALENKOV, K. (2014). Structure characterization and precipitation in two Al-Mg-Si-Mn casting alloys. In: Metallurgy and Foundry Engineering, Vol. 40, No. 3, pp. 111-124. ISSN 1230-2325. Go to original source...
  15. VANDER VOORT, G.F. (2004). ASM Handbook Volume 9: Metallography and Microstructures. ASM In-ternational, USA. ISBN 0-87170-706-3.
  16. TILLOVÁ, E., CHALUPOVÁ, M., ZÁVODSKÁ, D., KUCHARIKOVÁ, L., BELAN, J., VAŠKO, A. (2018). Effect of Al5FeSi phases in secondary AlZn10Si8Mg cast alloys on mechanical properties and fracture surface. In: Manufacturing Technology, Vol. 18, No. 6, pp. 1034-1040 UJEP. Czech Republic. ISSN 1213-2489. Go to original source...
  17. ZÁVODSKÁ, D., TILLOVÁ, E., KUCHARIKOVÁ, L., CHALUPOVÁ, M. (2016). Fractography evaluation of fracture surfaces of aluminium alloy after fatigue tests. In: Manufacturing Technology, Vol. 16, No. 5, pp. 1199-1204. UJEP. Czech Republic. ISSN 1213-2489. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.