Manufacturing Technology 2023, 23(5):663-669 | DOI: 10.21062/mft.2023.074

Optimizing Shock Absorber Operation for Improved Hot Forging Efficiency

Artur Meller ORCID...1, Marcin Suszyński ORCID...1, Stanisław Legutko ORCID...1, Marek Trączyński ORCID...1, Adrian Mróz ORCID...2, Vit Cernohlavek ORCID...3
1 Faculty of Mechanical Engineering, Poznan University Of Technology, Piotrowo 3 Street, 60-965 Poznań, Poland
2 Calisia University, 4th Nowy Świat Street, 62-800 Kalisz
3 Faculty of Mechanical Engineering, J. E. Purkyne University in Usti nad Labem. Pasteurova 3334/7, 400 01 Usti nad Labem. Czech Republic

Article presents a novel approach to addressing the challenge of forge-free filling of gas cylinder valve knobs in the context of the pneumatic shock absorber utilized within elevator systems. The shock absorber is a critical component responsible for ensuring accurate and efficient transportation of charge material to the electric inductor of automatic hot forging presses. Precise control of the shock absorber's operation is essential for maintaining proper system functionality and minimizing deficiencies. To investigate the system's response to changes in shock absorber operating parameters, the authors conducted a comprehensive simulation. The simulation results revealed that by identifying specific and optimal operational characteristics, the level of deficiencies can be significantly reduced. These findings offer valuable insights into system behavior, facilitating the optimization of shock absorber operation and overall improvement of the hot forging process. Implementation of the optimized shock absorber operation based on the simulation outcomes can enhance productivity, cost-efficiency, and quality in the hot forging industry.

Keywords: Die forging, Forging defects, Differential equations, Computer algebra system, Computer simulations
Grants and funding:

The authors thank the Ministry of Education and Science for their financial support (the Implementation Doctorate program, Agreement No. DWD/4/22/2020 of 06.11.2020)

Received: June 27, 2023; Revised: September 3, 2023; Accepted: September 12, 2023; Prepublished online: September 15, 2023; Published: December 6, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Meller A, Suszyński M, Legutko S, Trączyński M, Mróz A, Cernohlavek V. Optimizing Shock Absorber Operation for Improved Hot Forging Efficiency. Manufacturing Technology. 2023;23(5):663-669. doi: 10.21062/mft.2023.074.
Download citation

References

  1. EUROFORGE (2021). OFFICIAL REPORT World tons 2017-2018, EUROFORGE Production 2017-2018, https://www.euroforge.org/statistics/production-figures.html, accessed: 06.01.2023.
  2. GROWTH MARKET REPORTS (2020). Forging Market, Global Industry Analysis 2017-2019 and Forecast 2020-2027.
  3. ALTAN, T., NGAILE, G., SHEN, G. (Eds.). (2004). Cold and hot forging: fundamentals and applications (Vol. 1). ASM international. Go to original source...
  4. DOUGLAS, R., KUHLMANN, D. (2000). Guidelines for precision hot forging with applications, Journal of Materials Processing Technology, 98(2), 182-188. Go to original source...
  5. DOEGE, E., BOHNSACK, R. (2000). Closed die technologies for hot forging, Journal of Materials Processing Technology, 98(2), 165-170. Go to original source...
  6. CHRUŚCIŃSKI, M., SZKUDELSKI, S., BOROWSKI, J., MELLER, A., SUSZYŃSKI, M. New Copper Alloys Used to Make Products Intended for Contact with Drinking Water, Materials, 2021, 14, 6301. https://doi.org/10.3390/ma14216301 Go to original source...
  7. SVOBODA, M., CHALUPA, M., ČERNOHLÁVEK, V., ŠVÁSTA, A., MELLER, A., SCHMID, V. (2023). Measuring the Quality of Driving Characteristics of a Passenger Car with Passive Shock Absorb-ers, Manufacturing Technology, Vol. 23, No. 1, DOI: 10.21062/mft.2023.023 Go to original source...
  8. LOPOT, F., DUB, M., FLEK, J., HADRABA, D., HAVLÍČEK, M., KUČERA, L., ŠTOČEK, O., VESELÝ, T., et al. (2021). Gearbox mechanical efficiency determination by strain gauges direct application, Applied Sciences, 11(23), 11150; https://doi.org/10.3390/app112311150 Go to original source...
  9. SAPIETA, M., ŠULKA, P., SVOBODA, M. (2018). Using a numerical model to verification of thermoelastic analysis of flat specimen, Manufacturing Technology, Vol. 18, No. 3, pp 482-486, ISSN: 1213-2489, DOI: 10.21062/ujep/125.2018/a/1213-2489/MT/18/3/482 Go to original source...
  10. ČERNOHLÁVEK, V., ŠTĚRBA, J., SVOBODA, M., ZDRÁHAL, T., SUSZYŃSKI, M., CHALUPA, M., KROBOT, Z. (2021). Verification of the safety of storing a pair of pressure vessels, Manufacturing Technology, 21(6):762-773 | DOI: 10.21062/mft.2021.097 Go to original source...
  11. SMOLIK, J., MAZURKIEWICZ, A., MELLER, A. (2010). Increase of forging dies durability for production of steel synchronizer rings, Innovative Technological Solutions For Sustainable Development, Mazurkiewicz, A., Ed., The Łukasiewicz Research Network-Institute for Sustainable Technology: Warsaw, Poland, p. 183-195, ISBN 978-83-7204-955-1.
  12. MELLER, A., SUSZYŃSKI, S., LEGUTKO, S., TRĄCZYŃSKI, M., ČERNOHLÁVEK, V. (2023). Studies on a robotised process for forging steel synchronizer rings in the context of forging tool life, Manufacturing Technology, Vol. 23, No. 1, DOI: 10.21062/mft.2023.002 Go to original source...
  13. SZYNDLER, R. (2006). Aktualne trendy w kuźnictwie światowym i europejskim, Materiały Seminarium pt.: Kucie dokładne jako perspektywa polskiego kuźnictwa, Poznań.
  14. SIŃCZAK, J. (2007). Kucie dokładne, Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.
  15. GHASSEMALI, E. (2022). Forging of Metallic Parts and Structures. Encyclopedia of Materials : Metals and Alloys: Vol. 4, pp. 129-143. https://doi.org/10.1016/B978-0-12-819726-4.00148-4 Go to original source...
  16. SHAHABPOOR, E., PAVIC, A., RACIC, V. (2016). Identification of mass-spring-damper model of walking humans, Structures, 5, 233-246, doi:10.1016/j.istruc.2015.12.001 Go to original source...
  17. GUO, S., YANG, L., YUAN, Y., ZHANG, Z., CAO, X. (2023). Elastic energy storage technology using spiral spring devices and its applications: A review. Energy and Built Environment, 4(6), 669-679, ISSN 2666-1233, https://doi.org/10.1016/j.enbenv.2022.06.005 Go to original source...
  18. LAK, H., ZAHRAI, S. M. (2023). Self-heating of viscous dampers under short-& long-duration loads: Experimental observations and numerical simulations, Structures, 48, 275-287, ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2022.12.079 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.