Manufacturing Technology 2023, 23(5):580-588 | DOI: 10.21062/mft.2023.079

The Effect of Single-Wall Carbon Nanotubes Content on the Properties of Polyurethane Nanocomposite

Dana Bako¹ová ORCID..., Al¾beta Bako¹ová ORCID...
Faculty of Industrial Technologies in Púchov, Alexander Dubèek University of Trenèín. I. Krasku 491/30, 020 01 Púchov. Slovakia

This study aimed to investigate the influence of single-wall carbon nanotube (SWCNT) content on the mechanical properties of polyurethane (PU) nanocomposites. The SWCNT content varied from 0 wt% (reference sample) to 2 wt%. Tensile, hardness and Charpy impact tests as well as dynamic me-chanical analysis (DMA) were performed. Based on the test results it was observed that an increase in the content of single-wall carbon nanotubes resulted in significant improvements in material strength and stiffness. Furthermore, atomic force microscopy (AFM) was used to examine microsurface to-pography of the samples and to obtain spectroscopic curves, based on which local elasticity was eval-uated. Overall, performed measurements indicate that the incorporation of SWCNTs into PU matrix makes resultant nanocomposite stiffer and more resistant to deformation. The results highlight the potential of SWCNTs as effective reinforcement of polyurethane-based nanocomposites.

Keywords: Polyurethane, Nanocomposites, Single-wall carbon nanotubes, Nanofiller, AFM
Grants and funding:

This research work was supported by the Operational Programme Integrated Infrastructure and cofinanced by the European Regional Development Fund through the Advancement and Support of Research and Development project for the “Centre for diagnostics and quality testing of materials” in the RIS3 SK specialization domain (acronym: CEDITEK II., ITMS2014+ code 313011W442 and KEGA 011TnUAD-4/2021) for the implementation of progressive methods of analysis and synthesis of mechanical systems in the educational process

Received: July 17, 2023; Revised: October 27, 2023; Accepted: October 27, 2023; Prepublished online: November 14, 2023; Published: December 6, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bako¹ová D, Bako¹ová A. The Effect of Single-Wall Carbon Nanotubes Content on the Properties of Polyurethane Nanocomposite. Manufacturing Technology. 2023;23(5):580-588. doi: 10.21062/mft.2023.079.
Download citation

References

  1. AKINDOYO, J.O., et al. (2016). Polyurethane types, synthesis and applications-a review. In: Rsc Advances, 2016, Vol. 6, No. 115, pp. 114453-114482. ISSN 2046-2069. https://doi.org/10.1039/C6RA14525F. Go to original source...
  2. SATTAR, R., KAUSAR, A., SIDDIQ, M. (2015). Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review. In: Journal of Plastic Film & Sheeting, Vol. 31, No. 2, pp. 186-224. ISSN 8756-0879. https://doi.org/10.1177/8756087914535126. Go to original source...
  3. XIUSHU, T., et al. (2017). Research on Mechanical and Electrical Properties of Carbon Nanotubes Rein-forced Cement-based Materials. In: Manufacturing Technology, Vol. 17, No. 3, pp. 407-411. ISSN 2787-9402. https://doi.org/10.21062/ujep/x.2017/a/1213-2489/MT/17/3/407. Go to original source...
  4. VA©INA, M., PÖSCHL, M., ZÁDRAPA, P. (2021). Influence of Rubber Composition on Mechanical Properties. In: Manufacturing Technology, Vol. 21, No. 2, pp. 261-269. ISSN 2787-9402. https://doi.org/10.21062/mft.2021.021. Go to original source...
  5. BAKO©OVÁ, D. (2018). Dynamic Mechanical Analysis of Rubber Mixtures filled by Carbon Nanotubes. In: Manufacturing Technology, Vol. 18, No. 3, pp. 345-351. ISSN 2787-9402. https://doi.org/10.21062/ujep/103.2018/a/1213-2489/MT/18/3/345. Go to original source...
  6. PRÙCHOVÁ, E., KOSOVÁ, M., JAROLÍMOVÁ, P., JOSKA, L., HYBÁ©EK, V. (2018). Ti6Al4V Nanotubes Filled with Silver Nanoparticles as a Possible Antibacterial Surface for Implants. In: Manufacturing Technology, Vol. 18, No. 3, pp. 477-481. ISSN 2787-9402. https://doi.org/10.21062/ujep/124.2018/a/1213-2489/MT/18/3/477. Go to original source...
  7. VAITHYLINGAM, R., ANSARI, M. N. M., SHANKS, R. A. (2017). Recent advances in polyurethane-based nanocomposites: a review. In: Polymer-Plastics Technology and Engineering, Vol. 56, No. 14, pp. 1528-1541. ISSN 2574-089X. https://doi.org/10.1080/03602559.2017.1280683. Go to original source...
  8. RYSZKOWSKA, J. et al. (2007). Dispersion of carbon nanotubes in polyurethane matrix. In: Physica E: Low-Dimensional Systems and Nanostructures, Vol. 39, No. 1, pp. 124-127. ISSN 1873-1759. https://doi.org/10.1016/j.physe.2007.02.003. Go to original source...
  9. KARABANOVA, L. V., et al. (2017). Nanocomposites based on thermosetting polyurethane matrix and chemically modified multiwalled carbon nanotubes. In: Nanochemistry, Biotechnology, Nanomaterials, and Their Applications: Selected Proceedings of the 5th International Conference Nanotechnology and Nanomaterials, pp. 115-148. ISBN 978-3-319-92567-7. https://doi.org/10.1007/978-3-319-92567-7_8. Go to original source...
  10. MA, P. C., et al. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. In: Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 10, pp. 1345-1367. ISSN 1878-5840. https://doi.org/10.1016/j.compositesa.2010.07.003. Go to original source...
  11. KWON, J., KIM, H. (2005). Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerisation. In: Journal of Polymer Science Part A: Polymer Chemistry, Vol. 43, No. 17, pp. 3973-3985. ISSN 2642-4169. https://doi.org/10.1002/pola.20897. Go to original source...
  12. KUBÌNA, M. et al. (2019). On the tensile tests of polyurethane and its composites with carbon nano-tubes. In: Advances in Materials Science and Engineering, Vol. 2019. ISSN 1687-8442. https://doi.org/10.1155/2019/6598452. Go to original source...
  13. MOGHIM, M. H., ZEBARJAD, S. M. (2017). Tensile properties and deformation mechanisms of PU/MWCNTs nanocomposites. In: Polymer Bulletin, Vol. 74, pp. 4267-4277. ISSN 1436-2449. https://doi.org/10.1007/s00289-017-1955-9. Go to original source...
  14. CHEN, W., TAO, X., LIU, Y. (2016). Carbon nanotube-reinforced polyurethane composite fibers. In: Composites Science and Technology, Vol. 66, No. 15, pp. 3029-3034. ISSN 1879-1050. https://doi.org/10.1016/j.compscitech.2006.01.024. Go to original source...
  15. KOPAL, I. et al. (2016). Temperature dependence of thermal properties of thermoplastic polyurethane-based carbon nanocomposites. In: AIP Conference Proceedings, Vol. 1768, No. 1, pp. 020019. ISSN 1551-7616. https://doi.org/10.1063/1.4963041. Go to original source...
  16. LOPES, M. C. et al. (2014). Thermosetting polyurethane-multiwalled carbon nanotube composites: Thermomechanical properties and nanoindentation. In: Journal of Applied Polymer Science, Vol. 131, No. 23. ISSN 1097-4628. https://doi.org/10.1002/app.41207. Go to original source...
  17. SHOKRAEI, N. et al. (2019). Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering. In: Microscopy research and technique, Vol. 82. No. 8, pp. 1316-1325. ISSN 1097-0029. https://doi.org/10.1002/jemt.23282. Go to original source...
  18. RYSZKOWSKA, J. (2009). Quantitative image analysis of polyurethane/carbon nanotube composite micostructures. In: Materials Characterization, Vol. 60 No. 10, pp. 1127-1132. ISSN 1873-4189. https://doi.org/10.1016/j.matchar.2009.01.021 Go to original source...
  19. RAJA, M., RYU, S. H., SHANMUGHARAJ, A. M. (2013). Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid)(PLA)/CNT nanocomposites. In: European Polymer Journal, Vol. 49, No. 11, pp. 3492-3500. ISSN 1873-1945. https://doi.org/10.1016/j.eurpolymj.2013.08.009. Go to original source...
  20. JOMAA, M. H., et al. (2019). Quantitative analysis of grafted CNT dispersion and of their stiffening of polyurethane (PU). In: Composites Science and Technology, Vol. 171, pp. 103-110. ISSN 1879-1050. https://doi.org/10.1016/j.compscitech.2018.12.012. Go to original source...
  21. SUSLOV, A.A., CHIZHIK, S.A. (1997). Skanirujushhie zondovye mikroskopy (obzor). In: Materialy Tehnologii Instrumenty, Vol. 2, No. 3, pp. 78-89. ISSN 607-9922.
  22. SNEDDON, I.N. (1965). The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. In: International Journal of Engineering Science, Vol. 3, No. 1, pp. 47-57. ISSN 1879-2197. https://doi.org/10.1016/0020-7225(65)90019-4. Go to original source...
  23. XIONG, J. et al. (2006). The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. In: Carbon, Vol. 44, No. 13, pp. 2701-2707. ISSN 1873-3891. https://doi.org/10.1016/j.carbon.2006.04.005. Go to original source...
  24. MCCLORY, C. et al. (2007). Thermosetting polyurethane multiwalled carbon nanotube composites. In: Journal of Applied Polymer Science, Vol. 105, No. 3, pp. 1003-1011. ISSN 1097-4628. https://doi.org/10.1002/app.26144. Go to original source...
  25. HUANG, J., ZHOU, J., LIU, M. (2022). Interphase in polymer nanocomposites. In: JACS Au, Vol. 2, No. 2, pp. 280-291. ISSN 691-3704. https://doi.org/10.1021/jacsau.1c00430. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.