Manufacturing Technology 2023, 23(6):769-780 | DOI: 10.21062/mft.2023.108

Comparative Evaluation of Working Accuracy in the Atomic Diffusion Additive Manufacturing (ADAM) Process and the Binder Jetting (BJ) Process by Analysing Key Characteristics

Andrej Czan ORCID...1, Tatiana Czanova ORCID...1, Jozef Holubjak ORCID...1, Martin Novak ORCID...2, Natalia Czanova ORCID...1, Andrej Czan ORCID...1, Dominik Krisak ORCID...1
1 Department of Machining and Production Engineering, Faculty of Mechanical Engineering - University of Žilina, Univerzitna8215/1, 010 26, Žilina, Slovakia
2 Faculty of Mechanical Engineering, Jan Evangelista Purkyne University in Usti nad Labem, Pasteurova 3334/7, 400 01 Usti nad Labem. Czech Republic

This research focuses on comparing the working accuracy of two additive manufacturing processes, Atomic Diffusion Additive Manufacturing (ADAM) and Binder Jetting (BJ). Through the analysis of key characteristics of these processes, we aim to evaluate which one yields better results in terms of working accuracy. ADAM is a process that involves the gradual deposition of metallic materials using a plastic binder, whereas BJ is a process where the binder is applied to powder material, followed by the removal of excess binder. This work conducts a detailed examination of the properties of the ADAM and BJ processes, with a focus on surface texture and microstructure of the resulting objects, the use of optimal technological parameters, and the assessment of dimensional and shape accuracy. It is also important to note that the final nature of 3D objects depends on technological parameters such as geometry, orientation, and placement of individual shape specifications. The results of this study are crucial for assessing the accuracy of these additive processes and can serve as a significant basis for selecting an optimal approach in the field of additive manufacturing.

Keywords: Additive Manufacturing, Metal 3D Objects, Dimensional Accuracy, Shape Accuracy, Surface Roughness
Grants and funding:

This research was funded by the University of Žilina project VEGA 1/0520/21 Research of the integrity of surfaces created by the additive process of atomic diffusion of metal-elastomer fibers with post-process of productive machining, next project KEGA 063ŽU-4/2021: “Integration of detection-visualization technologies for innovative additive manufacturing technologies as an online tool for creative and critical thinking”

Received: September 11, 2023; Revised: December 11, 2023; Accepted: December 18, 2023; Prepublished online: December 18, 2023; Published: December 22, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Czan A, Czanova T, Holubjak J, Novak M, Czanova N, Czan A, Krisak D. Comparative Evaluation of Working Accuracy in the Atomic Diffusion Additive Manufacturing (ADAM) Process and the Binder Jetting (BJ) Process by Analysing Key Characteristics. Manufacturing Technology. 2023;23(6):769-780. doi: 10.21062/mft.2023.108.
Download citation

References

  1. GALATI, M.; MINETOLA, P.; Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts. Materials 2019, 12, 4122; doi:10.3390/ma12244122, 1-15 Go to original source...
  2. LEE, H.; LIM, C.H.J.; LOW, M.J.; THAM, N.; MURUKESHAN, V.M.; KIM, J.-J. Lasers in additive manufacturing: an overview. Int. J. Precis. Angl. Manuf. Green technol. 2017, 4, 307-322 Go to original source...
  3. BIAMINO, S.; PENNA, A.; ACKELID, U.; SABBADINI, S.; TASSA, O.; FINO, P.; PAVESE, M.; GENNARO, P.; BADINI, C. Electron beam melting of the alloy Ti-48Al-2Cr-2Nb: Investigation of microstructure and mechanical properties. Intermetallic Substances 2011, 19, 776-781 Go to original source...
  4. GIBSON, I.; ROSEN, D.W.; STUCKER, B. AM technologies; Springer: New York, NY, USA, 2015
  5. SAADLAOUI, Y.; MILAN, J.-L.; ROSSI, J.-M.; CHABRAND, P. Topology optimization and additive manufacturing: Comparison of design methods using industry codes. J. Manuf. Syst. 2017, 43, 178-186 Go to original source...
  6. KRUTH, J.-P.; LEU, M.-C.; NAKAGAWA, T. Advances in additive manufacturing and rapid prototyping. CIRP Ann. 1998, 47, 525-540 Go to original source...
  7. MCALEA, K. Materials and applications for selective laser sintering. In Proceedings of the 7th International Conference on Rapid Prototyping, San Francisco, CA, USA, March 31-April 3, 1997; pp. 23-33
  8. GALATI, M.; IULIANO, L. Literature review on powder-based electron beam melting with a focus on numerical simulations. Add. Manuf. 2018, 19, 1-20 Go to original source...
  9. SGAMBATIA, A.; BERGA, M.; ROSSIA, F.; DAURSKIKHB, A.; IMHOFC, B.; DAVENPORTC, R.; WEISS, P.; PEER, M.; GOBERT, T.; MAKAYA, A. URBAN: Lunar base design using 3D printing technologies. In Proceedings of the 69th International Astronautical Congress, Bremen, Germany, 1-5 October 2018; pp. 1-9
  10. CAMPBELL, R.I.; WOHLERS, T. MARKFORGED: A different approach to metal additive manufacturing. Available online: http://www.metal-am.com/wp-content/uploads/sites/4/2017/06/MAGAZINE-Metal-AM- Summer-2017-PDF-sp.pdf (accessed 23 July 2019)
  11. Markforged. Materials. Available online: https://markforged.com/blog/metal-3d-printing-materials/ (accessed 5 December 2019)
  12. SPENCER, O. O.; YUSUF, O. T.; TOFADE, T. C. The evolution of additive manufacturing technology: a trajectory towards the industrial revolution. Am. J. Moss. Ind. Eng. 2018, 3, 80-90 Go to original source...
  13. BHERO, S. Metal injection molding as a possible processing pathway for porous prostheses. Int. J. Res. Chem. Metall. Civ. Eng. 2014, 1, 50-53
  14. WOHLERS, T. DESKTOP METAL: Vychádzajúca hviezda kovovej aditívnej výroby sa zameriava na rýchlosť, náklady a veľkoobjemovú výrobu. Kovová AM. Dostupné online: http://www.metal-am.com/wp-content/uploads/sites/4/2017/06/MAGAZINE- Kov-AM-Leto-2017-PDF-sp.pdf (prístup k 23. júlu 2019)
  15. GONZALEZ-GUTIERREZ, J.; CANO, S.; SCHUSCHNIGG, S.; COCOON, C.; SAPKOTA, J.; HOLZER, C. Additive manufacturing of metal and ceramic components by extrusion of highly filled polymer materials: an overview and future perspectives. Materials 2018, 11, 840 Go to original source...
  16. Markforged. Stainless steel 17-4 PH. Material datasheet. Available online: https://static.markforged.com/ download/markforged_datasheet_17-4_ph_stainless_steel.pdf (accessed 5 December 2019)
  17. TIMKO, P.; HOLUBJAK, J.; BECHNÝ, V.; NOVÁK, M.; CZÁN, A.; CZÁNOVÁ, T.; Surface Analysis and Digitization of Components Manufactured by SLM and ADAM Additive Technologies, Manufacturing Technology 2023, 23(1):127-134, DOI: 10.21062/mft.2023.008 Go to original source...
  18. THIPPRAKMAS, S.; SONTAMINO, A.; PHANITWONG, W.; Finite Element Analysis of Counterbore-shaped Parts by Using Sheet-bulk Metal Forming Process, Manufacturing Technology 2017, 17(4):597-602, DOI: 10.21062/ujep/x.2017/a/1213-2489/MT/17/4/597 Go to original source...
  19. TIMKO, P.; CZÁNOVÁ, T.; CZÁN, A.; SLABEJOVÁ, S.; HOLUBJAK, J.; CEDZO, M.; Analysis of Parameters of Sintered Metal Components Created by ADAM and SLM Technologies, Manufacturing Technology 2022, 22(3):347-355, DOI: 10.21062/mft.2022.032 Go to original source...
  20. BURGEROVA, K.; HERMAN, A.; The issue of regeneration of metal powder DLMS 3D printing, Manu-facturing Technology 2020, 20(1):11-17 | DOI: 10.21062/mft.2020.014 Go to original source...
  21. PANNETON, R.; GROŠ, E. Missing mass method for measuring the open porosity of porous solids. Ac-ta Acust. United Acust. 2005, 91, 342-348
  22. KOZOVÝ, P.; ŠAJGALÍK, M.; DRBÚL, M.; HOLUBJÁK, J.; MARKOVIČ, J.; JOCH, R.; BALŠIANKA, R.; Identification of Residual Stresses after Machining a Gearwheel Made by Sintering Metal Powder, Manufacturing Technology 2023, 23(4):468-474, DOI: 10.21062/mft.2023.054 Go to original source...
  23. MESICEK, J.; RICHTAR, M.; PETRU, J.; PAGAC, M.; KUTIOVA, K.; Complex View to Racing Car Up-right Design and Manufacturing, Manufacturing Technology 2018, 18(3):449-456 DOI: 10.21062/ujep/120.2018/a/1213-2489/MT/18/3/449 Go to original source...
  24. MINETOLA, P.; GALATI, M.; IULIANO, L.; ATZENI, E.; SALMI, A. Using self-replicated parts to improve the design and accuracy of an inexpensive 3D printer. CIRP Procedure 2018, 67, 203-208 Go to original source...
  25. MINETOLA, P.; GALATI, M. The challenge of increasing the dimensional accuracy of a cheap 3D printer using self-replicable parts. Add. Manuf. 2018, 22, 256-264 Go to original source...
  26. ISO. ISO 286-1:1988-ISO system of limits and fits. Part 1: Basis of tolerances, deviations and appropriateness; International Organization for Standardization (ISO): Gevena, Switzerland, 1988
  27. ISO. ISO 10360-2:2009 - Geometric specifications of a product (GPS) - Acceptance and verification tests for coordinate measuring instruments (CMM). Part 2: CMM used to measure linear dimensions; International Organization for Standardization (ISO): Gevena, Switzerland, 2009
  28. CONDRUZ, M.R.; PARASCHIV, A.; PUSCASU, C. Effect of heat treatment on hardness and microstructure of ADAM produced 17-4 PH. Turbo 2018, V, 39-45
  29. VIOLANTE, M.G.; IULIANO, L.; MINETOLA, P. Design and manufacture of fixtures for loose components using selective laser sintering. Rapid prototype. J. 2007, 13, 30-37 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.