Manufacturing Technology 2024, 24(1):141-147 | DOI: 10.21062/mft.2024.011

The Effect of the Solution Annealing Temperature in the Hardening Process on the Properties of Al-Si-Cu Alloys

Tomáš Vlach ORCID..., Jaromír Cais ORCID..., Filip Mamoń ORCID..., Jakub Mareš ORCID...

This article deals with the influence of the applied solution annealing temperatures in the precipita-tion hardening process on the resulting increase in the mechanical properties of Al-Si-Cu alloy cast-ings with different copper contents in the alloy. AlSi7Cu2 and AlSi7Cu4 alloys were cast by gravity casting in a metal molds. Each of the samples was subjected to the Vickers microhardness measure-ment of a solid solution of α(Al) and Brinnel hardness measurement. Microscopic analysis and evalu-ation of the internal structure of each alloy was carried out in relation to used solution-annealing temperature.

Keywords: Al-Si alloys, Precipitation hardening, Microhardness, Heat treatment, Solution annealing
Grants and funding:

This research was supported by the internal UJEP Grant Agency (UJEP-SGS-2022-48-004-2)

Received: October 27, 2023; Revised: January 3, 2024; Accepted: January 9, 2024; Prepublished online: January 12, 2024; Published: February 23, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vlach T, Cais J, Mamoń F, Mareš J. The Effect of the Solution Annealing Temperature in the Hardening Process on the Properties of Al-Si-Cu Alloys. Manufacturing Technology. 2024;24(1):141-147. doi: 10.21062/mft.2024.011.
Download citation

References

  1. MICHNA, Š. Encyklopedie hliníku. Prešov: Adin, (2005). 700 s. ISBN 80-89041-88-4
  2. MICHNA, Š., MICHNOVÁ L. (2014). Neželezné kovy, PrintPoint s.r.o., Praha, ISBN 978-80-260-7132-7
  3. SJÖLANDER, E., SEIFEDDINE, S. (2009). The heat treatment of Al-Si-Cu-Mg casting alloys, Journal of Materials Processing Technology, 1249-1259. https://doi.org/10.1016/j.jmatprotec.2010.03.020 Go to original source...
  4. RASHED, H. M. M. A., BAZLUR RASHID, A. K. M. (2017). 2.12. Heat treatment of aluminium alloys, Comprehensive Materials Finishing, 337-371. https://doi.org/10.1016/B978-0-12-803581-8.09194-3 Go to original source...
  5. ROUČKA J., (2004). Metalurgie neželezných slitin, CERM s.r.o., Brno, ISBN 80-214-2790-6
  6. POLMEAR, I. STJOHN, D. JIAN-FENG, N. QIAN, M. (2017). 2 - Physical Metallurgy of Aluminium Alloys. Light Alloys, 31-107. https://doi.org/10.1016/B978-0-08-099431-4.00002-6. Go to original source...
  7. SHANMUGHASUNDARAM, P., DAHLE, A. K. (2018). Heat treatment of Aluminium Alloys. Reference Module in Materials Science and Materials Engineering, https://doi.org/10.1016/B978-0-12-803581-8.03374-9 Go to original source...
  8. CAMPBELL, F. C., (2008). Elements of metallurgy and engineering alloys. Materials Park, Ohio: ASM Inter-national ISBN 978-0-87170-867-0. https://doi.org/10.31399/asm.tb.emea.9781627082518 Go to original source...
  9. DINWIDDIE, K. (2016). Heat treating aluminium. AZOM https://www.azom.com/article.aspx?ArticleID=12703
  10. PTÁČEK, L. Nauka o materiálu II. Brno: CERM, 2002. ISBN 80-7204-130-4
  11. BOLIBRUCHOVÁ, D., MATEJSKA, M., MICHALCOVÁ, A. KASINSKA, J. Study of Natural and Artifi-cial Aging on AlSi9Cu3 Alloy at Different Ratios of Returnable Material in the Batch. Materials 2020, 13, 4538 https://doi.org/10.3390/ma13204538 Go to original source...
  12. SMALLMAN, R. E., BISHOP, R. J. (1999). Strengthening and toughening. Modern Physical Metallurgy and Materials Engineering, 259-296. https://doi.org/10.1016/B978-075064564-5/50008-2 Go to original source...
  13. EN AC-46600 (AISi7Cu2) (2023) European Steel and Alloy Grades / Numbers, SteelNumber, steel-number.com.
  14. BOLIBRUCHOVÁ, D., BRŮNA, M. (2017). Impact of the Elements Affecting the Negative IronBased Phases Morphology in Aluminium Alloys - Summary. Results In: Manufacturing Technology. ISSN 1213-2489. Vol. 17, No. 5, p. 675-679 Go to original source...
  15. EN AC-46300 (AISi7Cu4) (2023) European Steel and Alloy Grades / Numbers, SteelNumber, steel-number.com.
  16. LM21. [online]. [Cit. 1.9. 2023]. Dostupné z: http://www.nortal.co.uk/LM21/
  17. VLACH T, CAIS J. The Effect of Casting Mold Material on Microstructure of Al-Si Alloys. Manufacturing Technology. 2022;22(5):617-623. doi: 10.21062/mft.2022.072. Go to original source...
  18. NOVAKOVA I, MORAVEC J, KEJZLAR P. Metallurgy of the Aluminium Alloys for High-Pressure Die Casting. Manufacturing Technology. 2017;17(5):804-811. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/804. Go to original source...
  19. HREN I, SVOBODOVA J, MICHNA Š. Analysis of Microstructure Changes for AlSi7Mg0.3 Alloy Caused by Modification. Manufacturing Technology. 2019;19(5):767-771. doi: 10.21062/ujep/369.2019/a/1213-2489/MT/19/5/767. Go to original source...
  20. WEISS V, SVOBODOVÁ J. The Use of Colour Metallography and EDS for Identification of Chemical Heterogeneity of Selected Aluminium Alloys Copper and Zinc Alloyed. Manufacturing Technology. 2015;15(6):1048-1053. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/6/1048. Go to original source...
  21. WEISS V. Research of the Chemical Heterogeneity during Crystallization for AlCu4MgMn Alloy and the Possibility of its Elimination. Manufacturing Technology. 2016;16(1):289-294. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/1/289. Go to original source...
  22. BOLIBRUCHOVÁ D, MATEJKA M, KURIŠ M. Analysis of the Impact of the Change of Primary and Secondary AlSi9Cu3 Alloy Ratio in the Batch on its Performance. Manufacturing Technology. 2019;19(5):734-739. doi: 10.21062/ujep/363.2019/a/1213-2489/MT/19/5/734. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.