Manufacturing Technology 2024, 24(1):53-61 | DOI: 10.21062/mft.2024.018

Research on FSW Welds of Al-Alloy Modified by Laser Shock Peening Process

Henrieta Chochlíková ORCID...1, Jozef Majerík ORCID...1, Igor Barényi ORCID...1, Matúš Gavalec ORCID...1, Jana Escherová ORCID...1, Milan Pecanac ORCID...2, Dragan Rajnovic ORCID...2, Sebastian Baloš ORCID...2, Marcel Kohutiar ORCID...1
1 Faculty of Special Technology, Alexander Dubcek University of Trencin, Trenčín, 911 06, Slovakia
2 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, 21000, Serbia

The friction stir welding (FSW) method is classified as a so-called green or eco-friendly production technology in terms of its environmental impact. In the process of friction stir welding, there is no melting and the weld joint is formed by the movement of a rotating tool between the materials to be welded. The advantage of this technology is welding without the accompanying phenomena such as the release of harmful substances into the air, the emission of infrared, ultraviolet and visible radia-tion, and low energy consumption. In this work, friction stir welding tests of FSW and SR-FSW type were carried out, the butt welds themselves were performed on EN AW - 6060 sheets of 5 mm thick-ness. The surfaces of the specimens that met the weld quality visually were treated with laser shock peening (LSP), which is based on a pulsed effect. In the process of experiments, the authors investi-gated the weld quality at different speeds and tool rotation visually, then the welds were subjected to microscopic analysis, microhardness analysis and nanohardness analysis.

Keywords: Friction Stir Welding FSW, Laser Shock Peening LSP, Aluminium alloy, Mechanical properties, Microstructural analysis
Grants and funding:

This article was supported by the Slovak Research and Development Agency under contract No. APVV- SK-SRB-21–0030 with the name „Eco-friendly Self Reacting Friction Stir Welding of Al-alloys after treated with Laser Shock Peening“

Received: November 16, 2023; Revised: February 12, 2024; Accepted: February 15, 2024; Prepublished online: February 15, 2024; Published: February 23, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Chochlíková H, Majerík J, Barényi I, Gavalec M, Escherová J, Pecanac M, et al.. Research on FSW Welds of Al-Alloy Modified by Laser Shock Peening Process. Manufacturing Technology. 2024;24(1):53-61. doi: 10.21062/mft.2024.018.
Download citation

References

  1. THOMAS, W. M., NICHOLAS, E. D., NEEDHAM, J. C., MURCH, M. G., TEMPLESMITH P., DAWES C. J. 1991. G. B. Patent 9125978.8.
  2. DAWES, C., THOMAS, W. 1995. TWI Bull. p 124.
  3. CHANDRAN, R., SENTHIL KUMAR, V.S. 2015. Submerged Friction Stir Welding and Processing: In-sights of Other Researchers. International Journal of Applied Engineering Research. 10. 6530-6536.
  4. MISHRA, R. S., MAHONEY, M. W. 2007. Friction stir welding and processing.
  5. ISBN-13: 978-0-87170-840-3.
  6. [5] K. ELANGOVAN; V. BALASUBRAMANIAN. 2008. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater. Des. 29 (2008) 362-373. Go to original source...
  7. [6] LIU, G., MURR, L. E.; NIOU, C. S., MC-CLURE, J. C., VEGA, F. R. 1997. Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scr. Mater. Vol 37. p 355. Go to original source...
  8. [7] JATA, K. V., SEMIATIN S. L. 2000. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr. Mater. Vol 43. p 743. Go to original source...
  9. [8] BABU, S., ELANGOVAN, K., BALASUBRAMANIAN, V., BALASUBRAMANIAN, M. 2009. Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints. Met. Ma-ter. Int. 15. 321-330. Go to original source...
  10. [9] ZHANG, Z., XIAO, B.L., MA, Z.Y. 2012. Effect of welding parameters on microstructure and mechanical properties of friction stir welded 2219Al-T6 joints. J. Mater. Sci. 47. 4075-4086. Go to original source...
  11. [10] REN, S. R., MA, Z.Y., CHEN, L.Q. 2007. Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al-Mg-Si alloy. Scr. Mater. 56. 69-72. Go to original source...
  12. [11] FENG, A., CHEN, D., MA, Z. 2010. Microstructure and Cyclic Deformation Behavior of a Friction-Stir-Welded 7075 Al Alloy. Metall Mater Trans A 41, 957-971. Go to original source...
  13. [12] CAMPANELLI, S. L., CASALINO, G., CASAVOLA, C., MORAMARCO, V. 2013. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy. In: Materials 2013, 6, 5923-5941; doi:10.3390/ma6125923. ISSN 1996-1944 Go to original source...
  14. [13] TRUEBA, L., TORRES, M. A., JOHANNES, L. B., RYBICKI, D. 2017. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6. In: Int J Mater from (2018) 11:559-570. DOI 10.1007/s12289-017-1365-4 Go to original source...
  15. [14] LOHWASSER, D., CHEN, Z. 2010. Friction stir welding from basics to applications. Woodhead Publishing Ltd. pp:15-20. Go to original source...
  16. [15] CARY, H. B. 2005 Modern welding technology. Prentice Hall
  17. [16] GAVALEC, M., BARÉNYI, I., CHOCHLIKOVA, H. 2022. Properties and microstructure of joints created by the method of rotary friction welding, Zborník prednášok z 31. medzinárodnej konferencie metalurgie a materiálov METAL 2022, Brno. Go to original source...
  18. [17] GAVALEC, M., BARÉNYI, I., KRBAŤA, M., KOHUTIAR, M., BALOS, S., PECENAC, M. 2023. The Effect of Rotary Friction Welding Conditions on the Microstructure and Mechanical Properties of Ti6Al4V Titanium Alloy Welds. MDPI Materials, 2023, 16, 6492. Go to original source...
  19. [18] GOMATHISANKAR, M., GANGATHARAN, M., PITCHIPOO, P. 2018. A Novel Optimization of Friction Stir Welding Process Parameters on Aluminum Alloy 6061-T6. Mater. Today: Proceedings, Vol. 5. p. 14397-14404. Go to original source...
  20. [19] PAN, F.S., XU, A.L., DENG, D.A., et al. 2016. Effects of friction stir welding on microstructure and me-chanical properties of magnesium alloy Mg-5Al-3Sn. Mater. Des. Vol. 110. p.266-274. Go to original source...
  21. [20] CHUMAEVSKII, A., AMIROV, A., IVANOV, A., RUBTSOV, V., KOLUBAEV, E. 2023. Friction Stir Welding/Processing of Various Metals with Working Tools of Different Materials and Its Peculiarities for Titanium Alloys. Metals 13. 970. Go to original source...
  22. [21] MAO, Y., KE, L., LIU F., et al. 2015. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of 2060 aluminum lithium alloy. Int J Adv Manuf Technol 81, 1419-1431. Go to original source...
  23. [22] XU, A. 2020. Properties of High-Speed Friction Stir Welded 6063-T6 Aluminum Alloy. J. Phys.: Conf. Ser. 1676. Go to original source...
  24. [23] KAMMINANA, R., KAMBAGOWNI, V. S. 2022, Multi response optimization of friction stir welding of AA2050 using response surface methodology coupled with grey relational analysis and principal component analysis. Manufacturing Technology, Vol. 22, p. 156-167. Go to original source...
  25. [24] KOSTUREK, R., ŚNIEŻEK, L., GRZELAK, K., TORZEWSKI, J. 2021, Study on the weldability of AA2519 armor grade aluminium alloy. Manufacturing Technology, Vol. 21, p. 818-823. Go to original source...
  26. [25] KVASNOVÁ, P., NOVÁK, D., NOVÁK, V., ĎURIŠ, M. 2023, Computer Simulation of heating cycle of aluminium alloys using friction stir welding technology. Manufacturing Technology, Vol. 23, p. 47-52. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.