Manufacturing Technology 2024, 24(2):241-254

Roughness of Face-Milled Surface Topography in Directions Relative to the Feed Movement

Antal Nagy ORCID..., János Kundrák ORCID...
Institute of Manufacturing Science, Faculty of Mechanical Engineering and Informatics, University of Miskolc, H-3515 Miskolc, Hungary

By achieving the accuracy and roughness requirements imposed on the connecting surfaces of machine components –the topography created during machining – it is guaranteed to meet the operational requirements. We cannot ignore the fact that if connected milled plane surfaces move in different directions relative to each other during operation, there may be different contact conditions caused by the unevenness of the topography. The direction-dependent roughness irregularities and functional characteristics of the topography are not sufficiently explored, thus in this work we examine the roughness and its deviations by assuming displacements in different directions compared to the feed motion during operation. The inhomogeneity of the topography is analyzed with a symmetrical milling setup on a face-milled surface, with profiles measured in plane sections parallel to and in 8 other different directions from the feed. The degree and distribution of deviations of the recorded roughness profiles, the selected amplitude and functional roughness values are examined at several points of the measurement planes.

Keywords: Face milling, Surface roughness, Distribution of roughness

Received: December 15, 2023; Revised: February 19, 2024; Accepted: March 13, 2024; Prepublished online: March 20, 2024; Published: April 30, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Nagy A, Kundrák J. Roughness of Face-Milled Surface Topography in Directions Relative to the Feed Movement. Manufacturing Technology. 2024;24(2):241-254.
Download citation

References

  1. STOUT, K., BLUNT, L. (2000). Three dimensional surface topography. Penton Press, London. ISBN: 978-1-8571-8026-7
  2. GUO, S., ZHANG, J., JIANG, Q., ZHANG, B. (2022). Surface integrity in high-speed grinding of Al6061T6 alloy. In: CIRP Annals, Vol. 71, No. 1, pp. 281 - 284. ISSN: 0007-8506 Go to original source...
  3. HORVÁTH, R., CZIFRA, Á., DRÉGELYI-KISS, Á. (2015). Effect of conventional and non-conventional tool geometries to skewness and kurtosis of surface roughness in case of fine turning of aluminium alloys with diamond tools. In: The International Journal of Advanced Manufacturing Technology, Vol. 78, pp. 297 - 304. ISSN: 0268-3768 Go to original source...
  4. GADELMAWLA, E., KOURA, M., MAKSOUD, T., ELEWA, I., SOLIMAN, H. (2002). Roughness parameters. In: Journal of Materials Processing Technology, Vol. 123, No. 1, pp. 133 - 145. ISSN: 0924-0136 Go to original source...
  5. SEDLACEK, M., PODGORNIK, B., VIZINTIN, J. (2012). Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. In: Tribology International, Vol. 48, pp. 102 - 112. ISSN: 0301-679X Go to original source...
  6. WOJCIECHOWSKI, Ł., GAPINSKI, B., FIRLIK, B., MATHIA, T. (2020). Characteristics of tram wheel wear: Focus on mechanism identification and surface topography. In: Tribology International, Vol. 150, ArtNo. 106365. ISSN: 0301-679X Go to original source...
  7. PAWLUS, P., REIZER, R., ZELASKO W. (2020). Prediction of Parameters of Equivalent Sum Rough Surfaces. In: Materials, Vol. 13, ArtNo. 4898. MDPI. Basel, Switzerland. ISSN: 1996-1944 Go to original source...
  8. WOJCIECHOWSKI Ł., GAPIŃSKI, B., PACZKOWSKA, M., MATHIA, T. (2022). Investigations of the complex wear mechanisms of tram wheel tyres. In: Wear, Vol. 500, ArtNo. 204354. ISSN: 0043-1648 Go to original source...
  9. GRZESIK, W., ZAK, K. (2012). Modification of surface finish produced by hard turning using superfinishing and burnishing operations. In: Journal of Materials Processing Technology, Vol. 212, pp. 315 - 322. ISSN: 0924-0136 Go to original source...
  10. TODHUNTER, L., LEACH, R., LAWES, S., BLATEYRON, F. (2017). Industrial survey of ISO surface texture parameters. In: CIRP Journal of Manufacturing Science and Technology, Vol. 19, pp. 84 - 92. ISSN: 1755-5817 Go to original source...
  11. LEACH, R. (2001). The Measurement of Surface Texture using Stylus Instruments. In: Measurement Good Practice Guide, No. 37, pp. 1-85. Crown Copyright, Teedington. ISSN: 1368-6550.
  12. SAHAY, C., GHOSH, S. (2018). Understanding surface quality: beyond average roughness (Ra). In: 2018 ASEE Annual Conference & Exposition, ArtNo. 31176. ASEE American Society for Engineering Education, Salt Lake City, Utah.
  13. WHITEHOUSE, D. (2011). Handbook of Surface and Nanometrology. CRC Press, Roca Baton. ISBN: 978-1-4200-8201-2
  14. PAWLUS, P., REIZER, R., WIECZOROWSKI, M. (2020). Characterization of the shape of height distribution of two-process profile. In: Measurement, Vol. 153, ArtNo. 107387. ISSN: 0263-2241 Go to original source...
  15. YAN, X., WANG, X., ZHANG, Y. (2014). Influence of roughness parameters skewness and kurtosis on fatigue life under mixed elastohydrodynamic lubrication point contacts. In: Journal of Tribology, Vol. 136, No. 3, ArtNo. 031503. ISSN: 0742-4787 Go to original source...
  16. EGEA, A.J.S., MARTYNENKO, V., SIMONCELLI, A., SERRANCOLI, G., KRAHMER D.M. (2022). Sliding abrasive wear when combining WEDM conditions and polishing treatment on H13 disks over 1045 carbon steel pins. In: The International Journal of Advanced Manufacturing Technology, Vol. 118, pp. 183 - 193. ISSN: 0268-3768 Go to original source...
  17. ZAGÓRSKI, I., KORPYSA, J. (2019). Surface Quality in Milling of AZ91D Magnesium Alloy. In: Advances in Science and Technology. Research Journal, Vol. 13, No. 2, pp. 119 - 129. Lublin University of Technology, Polish Society of Ecological Engineering. Lublin, Poland. ISSN: 2299-8624 Go to original source...
  18. PAWLUS, P., REIZER, R., WIECZOROWSKI, M. (2021). Analysis of surface texture of plateau-honed cylinder liner - A review. In: Precision Engineering, Vol. 72, pp. 807 - 822. ISSN: 0141-6359 Go to original source...
  19. ZHANG, Y., BAI, Q., WANG, P. (2023). 3D surface topography analysis and functionality related performance of the machined surface in slot micro milling titanium alloy Ti6Al4V. In: The International Journal of Advanced Manufacturing Technology, Vol. 127, pp. 1609 - 1629. ISSN: 0268-3768 Go to original source...
  20. SINHA, M.K., KISHORE, K., SHARMA, P. (2023). Surface integrity evaluation in ecological nanofluids assisted grinding of Inconel 718 superalloy. In: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering (Pre-published, Digital release, DOI: 10.1177/09544089231171042) ISSN: 2041-3009 Go to original source...
  21. GRZESIK, W. (2016). Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art. In: Journal of Materials Engineering and Performance, Vol. 25, pp. 4460 - 4468. ISSN: 1059-9495 Go to original source...
  22. HAMDI, A., MERGHACHE, S.M. (2021). Impact of Abrasive Grit Size and MQL Supply on the Surface Roughness in Belt Grinding of a Case Hardened Steel. In: Jordan Journal of Mechanical and Industrial Engineering, Vol. 15, No. 5, pp. 441 - 449. ISSN: 1995-6665
  23. BENKHELIFA, O., CHERFIA, A., NOUIOUA, M. (2022). Modeling and multi-response optimization of cutting parameters in turning of AISI 316L using RSM and desirability function approach. In: The International Journal of Advanced Manufacturing Technology, Vol. 122, pp. 1987 - 2002. ISSN: 0268-3768 Go to original source...
  24. DAS, J., LINKE, B. (2017). Evaluation and systematic selection of significant multi-scale surface roughness parameters (SRPs) as process monitoring index. In: Journal of Materials Processing Technology, Vol. 244, pp. 157 - 165. ISSN: 0924-0136 Go to original source...
  25. KORZENIEWSKI, D., ZNOJKIEWICZ, N. (2021). Surface texture of the milled surface of aluminum-ceramic composite. In: Journal of Mechanical Science and Technology, Vol. 35, pp. 2879 - 2884. ISSN: 1738-494X Go to original source...
  26. SZTANKOVICS, I. (2023). Preliminary Study on the Function-Defining 3D Surface Roughness Parameters in Tangential Turning. In: International Journal of Integrated Engineering, Vol. 15, No. 7, pp. 72 - 81. ISSN: 2229-838X Go to original source...
  27. HAMDI, A., MERGHACHE, S.M., ALIOUANE, T. (2020). Effect of cutting variables on bearing area curve parameters (BAC-P) during hard turning process. In: Archive of Mechanical Engineering, Vol. 67, No. 1, pp. 73 - 95. ISSN: 0004-0738 Go to original source...
  28. ZAGÓRSKI, I., KORPYSA, J. (2020). Surface quality assessment after milling AZ91D magnesium alloy using PCD tool. In: Materials, Vol. 13, No. 3, ArtNo. 617. MDPI. Basel, Switzerland. ISSN: 1996-1944 Go to original source...
  29. ZALESKI, K., SKOCZYLAS, A., BRZOZOWSKA, M. (2017). The effect of the conditions of shot peening the Inconel 718 nickel alloy on the geometrical structure of the surface. In: Advances in Science and Technology. Research Journal, Vol. 11, No. 2, pp. 205 - 211. Lublin University of Technology, Polish Society of Ecological Engineering. Lublin, Poland. ISSN: 2299-8624 Go to original source...
  30. SMITH, G.T. (2008). Cutting Tool Technology: Industrial Handbook. Springer-Verlag, London. ISBN: 978-1-8480-0204-3
  31. BITELLI, G., SIMONE, A., GIRARDI, F., LANTIERI, C. (2012). Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture. In: Sensors, Vol. 12, No. 7, pp. 9110 - 9128. MDPI. Basel, Switzerland. ISSN: 1424-8220 Go to original source...
  32. PALÁSTI, K., SIPOS, S., CZIFRA, Á. (2012). Interpretation of "Rz = 4×Ra" and other roughness parameters in the evaluation of machined surfaces. In: Proceedings of the 13th International Conference on Tools: ICT 2012, pp. 237 - 244. University of Miskolc, Miskolc, Hungary. ISBN: 978-963-9988-35-4
  33. NAGY, A., KUNDRÁK, J. (2022). Analysis of inhomogeneity of surfaces milled with symmetrical, down-milling, and up-milling settings. In: Development in Machining Technology: Scientific - Research Reports vol.10, pp. 51 - 62. Cracow University of Technology, Cracow. ISBN: 978-80-553-4133-0

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.