Manufacturing Technology 2024, 24(2):227-234

Microstructure and Mechanical Properties AlSi7Mg Alloy with Sr, Al and AlSi7Mg

Tomasz Lipiński ORCID...
Faculty of Technical Sciences, University of Warmia and Masury in Olsztyn. Oczapowskiego 11, 10-719 Olsztyn Poland

Strength and malleability are important reasons for increasing applications of Al-Si alloys. Mechanical properties of Al-Si cast alloys depend not only on chemical composition but, more importantly, on microstructural features such as morphologies of dendritic α-rich in Al, eutectic β-rich in Si particles and other intermetallics that are present in the microstructure. The microstructure of an unmodified hypoeutectic AlSi7Mg alloy is responsible for the alloy's low strength parameters, and it limits the extent of practical applications. The mechanical properties of hypoeutectic silumins can be improved through chemical modification as well as traditional or technological processing. The improvement in mechanical properties generally has been attributed to the variations in the morphology and size of the eutectic silicon phase particles. This study presents the results of modification of an AlSi7Mg alloy with Sr, Al+ 10% Sr alloy and AlSi7Mg + 10% Sr master alloy. The tests were carried out on modified primary silumin alloy obtained at slow and fast cooling. Modifying additives in granular form and in the form of a rod were used. All additions were introduced into the alloy in an amount that guaranteed a constant strontium contribution to the modified alloy. The influence of the analyzed modifiers on the microstructure and mechanical properties of the processed alloy was presented in graphs. The modification of a hypoeutectic AlSi7Mg alloy improved the microstructure and alloy's properties. The results of the tests indicate that the microstructure and mechanical properties of the modified alloy are determined by the cooling rate of the modifier and its form. Higher parameters were obtained after modification of the AlSi7Mg alloy with a master alloy composed of Sr and AlSi7Mg alloy produced by rapid cooling and introduced in granular form.

Keywords: Silumin, Modification, Strontium, Mechanical properties

Received: August 21, 2022; Revised: April 2, 2023; Accepted: March 25, 2024; Prepublished online: March 25, 2024; Published: April 30, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Lipiński T. Microstructure and Mechanical Properties AlSi7Mg Alloy with Sr, Al and AlSi7Mg. Manufacturing Technology. 2024;24(2):227-234.
Download citation

References

  1. MICHNA, S., LUKAC, I., OCENASEK, V., KORENY, R., DRAPALA, J., SCHNEIDER, H., MISKUFOVA, A. (2005). Encyclopaedia of aluminium. Adin s.r.o. Presov (in Czech).
  2. OURDJINI, A., YILMAZ, F., HAMED, Q.S., ELLIOTT, R. (1992), Microstructure and mechanical properties of directionally solidified Al-Si eutectic alloys with and without antimony. In: Materials Science and Technology, Vol. 8, pp. 764-776. Go to original source...
  3. CHIKOVA, O. A, NIKITIN, K. V., MOSKOVSKIKH, O. P., TSEPELEV, V. S. (2016). Viscosity end electrical conductivity of liquid hypereutectic alloys Al-Si. In: Acta Metallurgica Slovaca Vol. 22, No. 3, pp. 153-163. Go to original source...
  4. LIPIŃSKI, T., SZABRACKI, P. (2015). Mechanical properties of AlSi9Mg alloy with a sodium modifier. In: Solid State Phenomena, Vol.. 223, pp. 78-86. Go to original source...
  5. HREN, I., KUSMIERCZAK, S., KURAJDOVÁ, K., LUŇÁK, M. (2020). Analysis of the influence of surface condition on the corrosion behavior of alloy 2024. In: Manufacturing Technology Vol. 20, No 5, pp. 603-611. Go to original source...
  6. KUSMIERCZAK, S., PESLOVA, F., NAPRSTKOVA, N. (2019). Influence of Heat Treatment Regime on Corrosion Resistance of Clad Aluminium Alloy. In: Manufacturing Technology Vol. 19, No 4, pp. 624-631. Go to original source...
  7. FLEMINGS, M.C. (1974). Solidification processing. Metallurgical and Material Transaction B 5, 2121-34. Go to original source...
  8. MONDELFO, L.F. (1976). Aluminium alloys. Structure and properties. Butter Wooths. London Boston.
  9. PTÁČEK, L. (1999). Slitiny hliniku na odlitky. In: Slévárenstvi Vol. 1, pp. 1-13.
  10. KURZ, W., FISHER, D. J. (1986). Fundamentals of Solidifications. TTP. Switzerland.
  11. ELLIOTT, R. (1983). Eutectic Solidification Processing, Butterworts, London. Go to original source...
  12. LU, S.Z., HELLAWELL, A. (1987). The mechanism of silicon modification in aluminium-silicon alloys: impurity induced twinning. In: Metallurgical Transactions A, Vol. 18, pp. 1721-1733. Go to original source...
  13. LIPIŃSKI, T. (2017). Analysis of mechanical properties of AlSi9Mg alloy with Al, Ti and B additions. In: Manufacturing Technology, Vol. 17, No. 5, pp. 761-766. Go to original source...
  14. NOVA, I., FRANA, K., SOBOTKA, I., SOLFRONK, P., KORECEK, D., NOVAKOVA, I. (2019). Production of porous aluminium using sodium chloride. In: Manufacturing Technology, Vol. 19, No. 5, pp. 817-822. Go to original source...
  15. MICHNA, ©., HREN,I., CAIS, J., MICHNOVÁ, L. (2020). The research of the different properties and production parameters having influence on deep-drawing sheets made of AlMg3 alloy. In: Manufacturing Technology Vol. 20, No 3, pp. 347-354. Go to original source...
  16. NOVÁ, I., FRAŇA, K., LIPIŃSKI, T. (2021). Monitoring of the interaction of aluminum alloy and sodi-um chloride as the basis for ecological production of expanded aluminum. In: Physics of Metals and Metallography, Vol. 122, No. 13, pp. 1288-1300. Go to original source...
  17. LU, S.Z., HELLAWELL, A. (1985). Growth mechanisms of silicon in Al-Si alloys. In: Journal of Crystal Growth, Vol. 73, No. 2, pp. 316-328. Go to original source...
  18. JAROSOVA, T., SKOCILASOVA, B,. KLIMENDA, F., STERBA, J., CERNOHLAVEK, V. (2021). Model solving of aluminium alloy solidification. In: Manufacturing Technology Vol. 21, No 4, pp. 471-478. Go to original source...
  19. KONOVALOV, S.V., ZAGULYAEV, D.V., IVANOV, Y.F., GROMOV, V.E. (2018). Effect of yttrium oxide modification of Al-Si alloy on microhardness and microstructure of surface layers. In: Metalurgija, Vol. 57, No. 4, pp. 253-256.
  20. WOŁCZYŃSKI, W., GUZIK, E., WAJDA, W., JEDRZEJCZYK, D., KANIA, B., KOSTRZEWA, M. (2012). Cet in solidifying roll - thermal gradient field analysis. In: Archives of Metallurgy and Materials, Vol. 57, No. 1, pp. 105-117. Go to original source...
  21. DAHLE, A.K., NOGITA, K., MCDONALD, S.D., DINNIS, C., LU L. (2005). Eutectic modification and microstructure development in Al-Si Alloys. In: Materials Science and Engineering A, Vol. 413-414, pp. 243-248. Go to original source...
  22. NOGITA, K., DAHLE, A.K. (2003). Effects of boron on eutectic modification of hypoeutectic Al-Si al-loys. In: Scripta Materialia Vol. 48, pp. 307-313. Go to original source...
  23. LIPIŃSKI, T. (2008). Modification of Al-Si alloys with the use of a homogenous modifiers. In: Archives of Metallurgy and Materials, Vol. 53, No. 1, pp. 193-197.
  24. LIPIŃSKI, T. (2016). Modification of the Al-9%SiMg alloy with aluminum, boron, and titanium fast cooled mixtures. In: Acta Phisica Polonica A, Vol. 130, No. 4, pp. 982-984. Go to original source...
  25. LIPIŃSKI, T. (2011). Use Properties of the AlSi9Mg Alloy with Exothermical Modifier. In: Manufacturing Technology, Vol. 11, No. 11, pp. 44-49. Go to original source...
  26. HREN, I., NAPRSTKOVA, N., MICHNA, S. (2020). Investigation in structure and mechanical properties of a356 alloy with micro 100 agent additions. In: Proceedings of Engineering For Rural Development Jelgava, 20.-22.05.2020, Vol. 19, pp. 212-217. Go to original source...
  27. LIPINSKI, T., SZABRACKI, P. (2013). Modification of the hypo-eutectic Al-Si alloys with an exothermic modifier. In: Archives of Metallurgy and Materials, Vol. 58, No. 2, pp. 453-458. Go to original source...
  28. ROMANKIEWICZ, F. (2002). Wpływ bizmutu na modyfikację stopu AlSi7 strontem i borem. In: Krzepnięcie Metali i Stopów Vol. 2, pp. 434-439.
  29. ZAGULIAEV, D., KONOVALOV, S., IVANOV, Y., GROMOV, V. (2019). Effect of electron-plasma alloying on structure and mechanical properties of Al-Si alloy. In: Applied Surface Science, Vol. 498, 143767 (on line). Go to original source...
  30. NOVA, I., FRAŇA, K., SOLFRONK, P., KORECEK, D. (2021). Monitoring the influence of sodium chloride particle size on the physical, mechanical properties and structure of samples of porous aluminium materials. In: Manufacturing Technology Vol. 21, No 1, pp. 109-116. Go to original source...
  31. PIERANTONI, M., GREMAUD, M., MAGNIN, P., STOLL, D., KURZ, W. (1992). The coupled zone of rapidly solidified Al-Si alloys in laser treatment. In: Acta Metallurgica et Materialia, Vol. 40, No. 7, pp. 1637-1644. Go to original source...
  32. SIGMUND, M. (2021). Possibilities of Porosity Repairs after Aluminium Alloys Welding. In: Manufacturing Technology4, pp. 539-543. Go to original source...
  33. NOVOTNY, J., MICHNA, S., JASKEVIC, M., LEGUTKO, S., HREN, I. (2022) influence of modification of aluminum alloys on their thermal expansion. In: Proceedings of Engineering For Rural Development Jelgava, 25.-27.05.2022, Vol. 21, pp. 369-376. Go to original source...
  34. PASTIEROVIČOVÁ, L., KUCHARIKOVÁ, L., TILLOVÁ, E., CHALUPOVÁ, M., PASTIRČÁK, R. (2022). Quality of automotive sand casting with different wall thickness from progressive secondary alloy. In: Production Engineering Archives, Vol. 28, No. 2, pp. 172-177. Go to original source...
  35. LIPIŃSKI, T. (2017). Effect of combinative cooled addition of strontium and aluminium on mechanical properties AlSi12 alloy. In: Journal of Achievements in Materials and Manufacturing Engineering, Vol. 83, No. 1, pp. 5-11. Go to original source...
  36. MAGNIN, P., MASON, J.T., TRIVEDI, R.. (1991). Growth of irregular eutectics and the Al-Si system. In: Acta Metallurgica et Materialia, Vol. 39, No. 4, pp. 469-480. Go to original source...
  37. LI, J.H., ZARIF, M.Z., ALBU, M., MCKAY, B.J., HOFER, F., SCHUMACHER, P. (2014). Nucleation kinetics of entrained eutectic Si in Al-5Si alloys. In: Acta Materialia, Vol. 72, pp. 80-98. Go to original source...
  38. LIU, S., LEE, J.H., TRIVEDI, R. (2011). Dynamic effects in the lamellar-rod eutectic transition. In: Acta Materialia, Vol. 59, No. 8, pp. 3102-3115. Go to original source...
  39. JACKSON, K.A., BEATTY, K.M., GUDGEL, K.A. (2004). An analytical model for non-equilibrium segregation during crystallization. Journal of Crystal Growth, Vol. 271, pp. 481-494. Go to original source...
  40. GˇDEK-MOSZCZAK, A., PIETRASZEK, J., JASIEWICZ, B., SIKORSKA, S., WOJNAR, L. (2015). The bootstrap approach to the comparison of two methods applied to the evaluation of the growth index in the analysis of the digital X-ray image of a bone regenerate. In: Studies in Computational Intelligence, Vol. 572, pp. 127-136. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.