Manufacturing Technology 2024, 24(2):265-271

Analysis of Extrusion Process Parameters in PLA Filament Production for FFF Technology

Vojtech Senkerik ORCID...1, Martin Bednarik ORCID...1, Vaclav Janostik ORCID...1, Michaela Karhankova ORCID...2, Ales Mizera ORCID...2
1 Tomas Bata University in Zlin, Faculty of Technology, Zlin, Czech Republic
2 Tomas Bata University in Zlin, Faculty of Applied Informatics, Zlin, Czech Republic

Additive technologies are becoming a common part of not only prototype production, but also piece or small series production. However, the choice of technology and material plays a key role in the applicability of the manufactured parts. The most widespread type of additive technology is FFF technology, which consists of applying a fused plastic string in single layers. The resulting mechanical properties of parts produced using this technology depend not only on the material and structure selected, but also on the process parameters used in the printing process itself. This study deals with the production of filament from PLA, which is the primary material. The advantage is its environmental degradability after the end of the life cycle of PLA products. However, the resulting properties of the printed parts may depend on the way the filament is prepared and in particular on the melt temperature during filament extrusion. This study investigates the effect of the produced filaments on the quality of printed parts. It has been shown that the filament production technology has a significant effect on the quality of printed parts.

Keywords: Extrusion, Filament, PLA, Additive manufacturing
Grants and funding:

This research was funded by the Internal Grant Agency of Tomas Bata University supported under project No. IGA/CebiaTech/2024/002

Received: January 8, 2024; Revised: April 2, 2024; Accepted: April 18, 2024; Prepublished online: April 18, 2024; Published: April 30, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Senkerik V, Bednarik M, Janostik V, Karhankova M, Mizera A. Analysis of Extrusion Process Parameters in PLA Filament Production for FFF Technology. Manufacturing Technology. 2024;24(2):265-271.
Download citation

References

  1. CAMINERO, M. Á.; CHACÓN, J. M.; GARCÍA-PLAZA, E.; NÚÑEZ, P. J.; REVERTE, J. M.; BECAR, J. P. (2019) Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Polymers, 11, 799. https://doi.org/10.3390/polym11050799 Go to original source...
  2. ¯ENKIEWICZ, M., RICHERT, J., RYTLEWSKI, P., MORACZEWSKI, K., STEPCZYÑSKA, M., & KARASIEWICZ, T. (2009). Characterisation of multi-extruded poly(lactic acid). Polymer Testing, 28(4), 412-418. doi:10.1016/j.polymertesting.2009.01.012 Go to original source...
  3. RASHID, A. (2019) Additive manufacturing technologies. The CIRP encyclopedia of production engineering. Laperriere L, Reinhart G, (eds), Springer, Berlin Go to original source...
  4. PIEMONTE, V., SABATINI, S. & GIRONI, F. (2013) Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development?. J Polym Environ 21, 640-647. https://doi.org/10.1007/s10924-013-0608-9 Go to original source...
  5. POCK, E., KISS, C., JANECSKA, Á, EPACHER, E., & PUKÁNSZKY, B. (2004). Effect of chain structure on the processing stability of high-density polyethylene. Polymer Degradation and Stability, 85(3), 1015-1021. doi:10.1016/j.polymdegradstab.2003.05.005 Go to original source...
  6. KOZ£OWSKA, M.; LIPIÑSKA, M.; OKRASKA, M.; PIETRASIK, J. (2023) Polypropylene Color Masterbatches Containing Layered Double Hydroxide Modified with Quinacridone and Phthalocyanine Pigments-Rheological, Thermal and Application Properties. Materials, 16, 6243. https://doi.org/10.3390/ma16186243 Go to original source...
  7. JANOSTIK, V.; SENKERIK, V.; MANAS, L.; STANEK, M.; CVEK, M. (2023) Injection-Molded Isotactic Polypropylene Colored with Green Transparent and Opaque Pigments. Int. J. Mol. Sci., 24, 9924. https://doi.org/10.3390/ijms24129924 Go to original source...
  8. PADHI, S. K., SAHU, R.K., MAHAPATRA, S.S. and Mondal, A.K. (2017) Optimization of fused deposition modelling process parameters using a fuzzy inference system coupled with Taguchi philosophy. Adv. Manuf. 5, 231-242 (2017). https://doi.org/10.1007/s40436-017-0187-4 Go to original source...
  9. PENG, A., XIAO, X. & YUE, R. (2014) Process parameter optimization for fused deposition modelling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol 73, 87-100. https://doi.org/10.1007/s00170-014-5796-5 Go to original source...
  10. CAMPOSECO-NEGRETE, C. (2020) Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach. Prog Addit Manuf 5, 59-65. https://doi.org/10.1007/s40964-020-00115-9 Go to original source...
  11. KOMETANI, H., MATSUMURA, T., SUGA, T. AND KANAI, T. (2006)"Quantitative Analysis for Polymer Degradation in the Extrusion Process" International Polymer Processing, vol. 21, no. 1, pp. 24-31. https://doi.org/10.3139/217.0092 Go to original source...
  12. ALAFAGHANI, A., QATTAWI, A., ALRAWI, B., & GUZMAN, A. (2017). Experimental optimization of fused deposition modelling processing parameters: A design-for-manufacturing approach. Procedia Manufacturing, 10, 791-803. doi:10.1016/j.promfg.2017.07.079 Go to original source...
  13. SHEN, L., & WORRELL, E. (2014). Chapter 13 - plastic recycling. In E. Worrell, & M. A. Reuter (Eds.), Handbook of recycling (pp. 179-190). Boston: Elsevier. doi:10.1016/B978-0-12-396459-5.00013-1 Retrieved from https://www.sciencedirect.com/science/article/pii/B9780123964595000131 Go to original source...
  14. TANOTO, Y. Y., ANGGONO, J., SIAHAAN, I. A., BUDIMAN W.; (2017) The effect of orientation difference in fused deposition modeling of ABS polymer on the processing time, dimension accuracy, and strength. AIP Conf. Proc.; 1788 (1): 030051. https://doi.org/10.1063/1.4968304 Go to original source...
  15. MOHAMED, O. A., MASOOD, S. H., & BHOWMIK, J. L. (2016). Optimization of fused deposition modelling process parameters for dimensional accuracy using I-optimality criterion. Measurement, 81, 174-196. doi:10.1016/j.measurement.2015.12.011 Go to original source...
  16. HUYNH, H. N., NGUYEN, A. T. HA, N. L., & THAI. T. T. (2017). Application of fuzzy taguchi method to improve the dimensional accuracy of fused deposition modelling processed product. Paper presented at the 2017 International Conference on System Science and Engineering (ICSSE), 107-112. doi:10.1109/ICSSE.2017.8030847 Go to original source...
  17. KOHAN, M., (2023) Parameter Settings of the PEEK and PPSU Filaments Production with the Ceramic Component. In Materials Research Proceedings, 30:16-23. https://doi.org/10.21741/9781644902578-3. Go to original source...
  18. KOHAN, M.; LANCO©, S.; SCHNITZER, M.; ®IVÈÁK, J.; HUDÁK, R. (2022) Analysis of PLA/PHB Biopolymer Material with Admixture of Hydroxyapatite and Tricalcium Phosphate for Clinical Use. Polymers, 14, 5357. https://doi.org/10.3390/polym14245357 Go to original source...
  19. HARTIG, S., HILDEBRANDT, L., FETTE, M. (2022) Process parameter determination for small recycling plants for the production of filament for FFF printing using the Taguchi method. Prog Addit Manuf 7, 87-97. https://doi.org/10.1007/s40964-021-00218-x Go to original source...
  20. KOHUTIAR, M., JANÍK, R., KRBATA, M., BARTOSOVA, L., JUS, M., & TIMÁROVÁ, ¥. (2023). Study of the Effect of Pretreatment of 3D Printed PLA Filament Modified by Plasma Discharge and Changes in Its Dynamic-Mechanical Properties. Manufacturing Technology Journal, 23(4), 461-467. doi: 10.21062/mft.2023.050 Go to original source...
  21. JABBAR, M.A. (2023). A Design of Experiment Analysis Approach to Improve Part Quality in 3D Printing. Manufacturing Technology Journal, 23(3), 290-297. doi: 10.21062/mft.2023.034 Go to original source...
  22. PI©, D., POUZAROVÁ, H., & HANU©OVÁ, K. (2022). Degradation of 3D Printed Polymer Composites with Filler of Cellulose-Based Materials. Manufacturing Technology Journal, 22(3), 327-333. doi: 10.21062/mft.2022.041 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.