Manufacturing Technology 2024, 24(3):478-482 | DOI: 10.21062/mft.2024.049

Study on the Mechanism of Improving Surface Roughness of Gray Cast Iron Machining by Wiper Inserts

Liang Wang ORCID...1, Lei Han ORCID...1, Long He ORCID...1, Kan Wang ORCID...2, Xiaoxin Zhu ORCID...2
1 Chengdu Aeronautic Polytechnic, Chengdu, 610100, China
2 Xiamen Golden Egret Special Alloy Co., Ltd, Xiamen, 361006, China

Based on the high hardness, poor thermal conductivity, and easy detachment of graphite in cast iron materials. Traditional rough machining inserts cannot achieve good machining surface quality, while the use of precision machining inserts results in rapid tool wear due to excessively sharp rake angles, limiting feed rates and reducing machining efficiency. In order to solve these problems, this paper proposes a method of cutting cast iron with coarse and wiper insert mixed cutting tools, aiming to improve the surface quality of machining and enhance machining efficiency. By studying the mecha-nism and cutting experiments of the wiper inserts, it was found that it improved the surface quality of cast iron and analyzed the reasons for tool wear. By controlling the integrity of the precision ma-chined surface of cast iron, the aim is to establish the basic theory and key technologies for the pre-cise and efficient manufacturing of high hardness materials. Improve the surface quality of cast iron processing, extend tool life, and improve processing efficiency.

Keywords: Wiper, Surface Roughness, Geometry, Wear, Workpiece Material, Cast iron
Grants and funding:

This research was funded by the Xiamen Golden Egret Special Alloy Co., Ltd. through the scientific research project "Peristaltic Iron Valve Block Face Milling Vibration Control"

Received: September 5, 2023; Revised: May 15, 2024; Accepted: May 16, 2024; Prepublished online: May 16, 2024; Published: July 1, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wang L, Han L, He L, Wang K, Zhu X. Study on the Mechanism of Improving Surface Roughness of Gray Cast Iron Machining by Wiper Inserts. Manufacturing Technology. 2024;24(3):478-482. doi: 10.21062/mft.2024.049.
Download citation

References

  1. LABUDA, W., & CHARCHALIS, A. (2015). The Influence of Changing the Side Angle of the Cutting Tool by Wiper Technology on the Value of Material Ratio Parameters of Steel Applied to Marine Pump Shaft Pins.In: Journal of KONES. Powertrain and Transport,Vol 22,No. 2,pp. 139-148,ISSN 1231-4005 Go to original source...
  2. TOLEDO, J. V. R., ARRUDA, E. M., JÚNIOR, S. S. C., DINIZ, A. E., & FERREIRA, J. R. (2018). Performance of wiper geometry carbide tools in face milling of AISI 1045 steel.In: Journal of the Brazilian Society of Mechanical Sciences and Engineering,Vol 40,No. 10,ISSN 1678-5878 Go to original source...
  3. HIROSE, M., HAYASAKA, T., & SHAMOTO, E. (2021). Unique regenerative chatter in wiper-turning operation with burnishing process Part 2: Experimental verification of predicted generation mechanism, critical stability, and characteristics.In: Precision Engineering,Vol 71,pp. 313-323,ISSN 0141-6359 Go to original source...
  4. MUTHUSWAMY, P., & NAGARAJAN, S. K. (2021). Experimental Investigation on the Effect of Different Micro-Geometries on Cutting Edge and Wiper Edge on Surface Roughness and Forces in Face Milling.In: Lubricants,Vol 9,No.10,ISSN 2075-4442 Go to original source...
  5. PLATT, T., MEIJER, A., MERHOFE, T., & BIERMANN, D. (2021). Simulation-Based and Experimental Investigation of Micro End Mills with Wiper Geometry.In: Micromachines,Vol 12,No. 5,ISSN 2072-666X Go to original source...
  6. LIU, Z. Q., ZHANG, P., GUO, P., & AI, X. (2008). Surface Roughness in High Feed Turning with Wiper Insert.In:Key Engineering Materials,Vol 375-376,pp. 406-410,ISSN 1662-9795 Go to original source...
  7. ZHANG, P., & LIU, Z. (2016). Modeling and prediction for 3D surface topography in finish turning with conventional and wiper inserts.In: Measurement,Vol 94,pp. 37-45,ISSN 0263-2241 Go to original source...
  8. TOMOV, M., KUZINOVSKI, M., CICHOSZ, P., & SKOWRONEK, H. (2016). Mathematical modeling of maximum height of roughness profile in turning with using wiper insert geometry.In:Mechanik ,pp. 1344-1345,ISSN 0025-6552 Go to original source...
  9. KIYAK M., S. I., CAKIR O. (2016). Application of wiper insert in cutting tool technology.In: Proceedings of ICAS2016 1st International Conference on Advances in Sciences,pp. 60-65.
  10. KUMAR, A., & PRADHAN, S. K. (2018). Investigations into hard turning process using wiper tool inserts.In: Materials Today: Proceedings,Vol 5,No. 5,pp. 12579-12587,ISSN 2214-7853 Go to original source...
  11. AMINI, S., & PAKTINAT, H. (2014). Ceramic Tools with Ordinary and Wiper Inserts in Near Dry Ma-chining with High Speed on Super Alloy Monel K500.In: Materials and Manufacturing Processes,Vol 29,No. 5,pp. 579-584,ISSN 1042-6914 Go to original source...
  12. ESTEVES CORREIA, A., & PAULO DAVIM, J. (2011). Surface roughness measurement in turning carbon steel AISI 1045 using wiper inserts.In: Measurement,Vol 44,No.5,pp. 1000-1005,ISSN 0263-2241 Go to original source...
  13. D'ADDONA, D. M., & RAYKAR, S. J. (2016). Analysis of Surface Roughness in Hard Turning Using Wiper Insert Geometry.In:Procedia CIRP,Vol 41,pp. 841-846,ISSN 2212-8271 Go to original source...
  14. IVCHENKO, OLEKSANDR AND IVANOV, VITALII AND TROJANOWSKA, JUSTYNA AND ZHYHYLII, DMYTRO AND CISZAK, OLAF AND ZALOHA, OLHA AND PAVLENKO, IVAN AND HLADYSHEV, DMYTRO.(2022) Method for an Effective Selection of Tools and Cutting Conditions during Precise Turning of Non-Alloy Quality Steel C45. In: Materials Vol 15,No. 2,ISSN 1996-1944 Go to original source...
  15. KUMAR, A., PRADHAN, S. K., & JAIN, V. (2020). Experimental investigation and optimization using regression genetic algorithm of hard turning operation with wiper geometry inserts.In: Materials Today: Proceedings,Vol 27,pp. 2724-2730,ISSN 2214-7853 Go to original source...
  16. SALEEM, M. Q., & MUMTAZ, S. (2020). Face milling of Inconel 625 via wiper inserts: Evaluation of tool life and workpiece surface integrity.In: Journal of Manufacturing Processes,Vol 56,pp. 322-336,ISSN 1526-6125 Go to original source...
  17. DAVIM, J. P., & FIGUEIRA, L. (2007). Comparative evaluation of conventional and wiper ceramic tools on cutting forces, surface roughness, and tool wear in hard turning AISI D2 steel.In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,Vol 221,No. 4,pp. 625-633,ISSN 0954-4054 Go to original source...
  18. GRZESIK, W., & WANAT, T. (2006). Surface finish generated in hard turning of quenched alloy steel parts using conventional and wiper ceramic inserts. In: International Journal of Machine Tools and Manufacture,Vol 46,No. 15,pp. 1988-1995,ISSN 0890-6955 Go to original source...
  19. WANG LIANG, PAN YONGQIANG, AND ZHU XIAOXIN. (2023). Effect of Milling Parameters on the Surface Roughness of SiCp/Al Materials. In: Manufacturing Technology, No. 4,pp. 545-550, ISSN 1213-2489 Go to original source...
  20. KAROLCZAK, P., KOWALSKI, M., & RASZKA, K. (2021). The Effect of the Use of Cutting Zone Minimum Quantity Lubrication and Wiper Geometry Inserts on Titanium Ti6Al4V Surface Quality after Turning. In: Tribology in Industry,Vol 43,No. 2,pp. 321-333,ISSN 0354-8996 Go to original source...
  21. SLABEJOVÁ S, HOLUBJAK J, TIMKO P, RICHTÁRIK M, KRAJČOVIECH S, PROKEIN D. (2022).Cutting Forces in the Milling of Difficult-to-Machine Material used in the Aero Space Industry Using a Monolithic Ceramic Milling Cutter. In: Manufacturing Technology, Vol 22,No. 2,pp. 211-217, ISSN 1213-2489 Go to original source...
  22. DI CRESCENZO, A. D., MOUSSEIGNE, M., & RUBIO, W. (2022). Effect on surface integrity of high-productivity finishing on Ti-6Al-4V with wiper edge length tool.In: Procedia CIRP,Vol 108,pp. 406-411,ISSN 2212-8271 Go to original source...
  23. NÁPRSTKOVÁ N, ©RAMHAUSER K, HREN I, NOVOTNÝ J, SVIANTEK J. (2023).Microscopic Wear Analysis of Indexable Inserts after Machining of 34CrNiMo6 Steel. In: Manufacturing Technology, Vol 23, No. 5, pp. 676-684, ISSN 1213-2489 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.