Manufacturing Technology 2024, 24(3):365-377 | DOI: 10.21062/mft.2024.056

Effects of Filler Modification on the Properties of Elastomeric Composites

Róbert Janík ORCID..., Ivan Labaj ORCID..., Petra Skalková ORCID..., Silvia Ďurišová ORCID..., Katarína Moricová ORCID...
Faculty of Industrial Technologies in Púchov, Alexander Dubček University of Trenčín Ivana Krasku 491/30, Púchov, Slovakia

The application of cellulose (CEL) as a filler in elastomeric composites (ECs) was studied, with cellulose examined in its untreated form (RAW), after DCSBD plasma modification, and ozone pre-treatment. Changes in surface fluorescence demonstrated that DCSBD plasma-modified cellulose achieved better dispersion in the elastomeric composite mixture, which also showed improved strength and elongation in static tensile tests. DMA analysis confirmed changes in visco-elastic properties, with DCSBD plasma-modified cellulose altering the glass transition temperatures of the Elastic and Loss modulus, as well as Tan Delta. SEM microscopy did not conclusively demonstrate the reinforcing effect of plasma-modified cellulose. Small property changes were observed with ozone pre-treated cellulose, similar to the unmodified cellulose composite mixture (NR).

Keywords: Ozone, DCSBD plasma, Cellulose, Composites, DMA analysis
Grants and funding:

This research work has been supported by the project KEGA 001TnUAD-4/2022
This research work has been supported by the Operational Program Integrated Infrastructure, co-financed by the European Regional Development Fund by the project: Advancement and support of R&D for "Centre for diagnostics and quality testing of materials" in the domains of the RIS3 SK specialization, Acronym: CEDITEK II., ITMS2014+ code 313011W442

Received: January 10, 2024; Revised: May 27, 2024; Accepted: June 15, 2024; Published: July 1, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Janík R, Labaj I, Skalková P, Ďurišová S, Moricová K. Effects of Filler Modification on the Properties of Elastomeric Composites. Manufacturing Technology. 2024;24(3):365-377. doi: 10.21062/mft.2024.056.
Download citation

References

  1. PIŠ, D., POUZAROVÁ, H., HANUŠOVÁ, K. (2022). Degradation of 3D printed polymer composites with filler of cellulose-based materials. In: Manufacturing Technology, Vol. 22, pp. 327 - 333. Go to original source...
  2. GAUTAM, S.P., BUNDELA, P.S., PANDEY, A.K., JAMALUDDIN., AWASTHI, M.K., SARSAIYA, S. (2010). A review of systematic study of cellulose. In: Journal of Applied and Natural Science, Vol. 2, pp. 330 - 343. Go to original source...
  3. BUTNARU, M., FLAVIUS, A.I. (2022). General information about cellulose. In: Journal of Biotechnology and Bioprocessing, Vol. 3, 5 p.
  4. HOKKANEN, A., BHATNAGAR, A., SILLANPÄÄ, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. In: Water Research, Vol. 91, pp. 156 - 173. Go to original source...
  5. RAO, H.J., et al. (2024). Effect of chemical treatment on physio-mechanical properties of lignocellulose natural fiber extracted from the bark of careya arborea tree. In: Heliyon, Vol. 10, e26706. Go to original source...
  6. PÉREZ, J., MUŇOZ-DORADO, J., de la RUBIA, T., MARTÍNEZ, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. In: International Microbiology, Vol. 5, pp.52 - 63. Go to original source...
  7. GOMRI, C., CRETIN, M., SEMSARILAR., M. (2022). Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review. In: Carbohydrate Polymers, Vol. 294, 119790. Go to original source...
  8. TANG, Z., LI, W., WIAO, H., MIAO, Q., HUANG, L., CHEN, L., WU, H. (2017). TEMPO-Oxidized cellulose with high degree of oxidation. In: Polymers, Vol. 9, 421. Go to original source...
  9. RICO del CERRO, D., KOSO, V. T., KAKKO, T., KING, A. W. T., KILPELÄINEN, I. (2020). Crystallinity reduction and enhancement in the chemical reactivity of cellulose by non-dissolving pre-treatment with tetrabutylphosphonium acetate. In: Cellulose, Vol. 27, pp. 5545 - 5562. Go to original source...
  10. MORENT, R., DE GEYTER, N., DESMET, T., DUBRUEL, P., LEYS, C. (2011). Plasma surface modification of biodegradable polymers: a review. In: Plasma processes and polymers, Vol. 8, Is. 3, pp. 171 - 190. Go to original source...
  11. GERULLIS, S., PFUCH, A., KRETZSCHMAR, B.S.M., BEYER, M., FISCHER, S. (2022). Plasma treatment of cellulose: investigation on molecular changes using spectroscopic methods and chemical derivatization. In: Cellulose, Vol. 29, pp. 7163 - 7176. Go to original source...
  12. ŠTEPÁNOVÁ, V., SKÁCELOVÁ, D., SLAVÍČEK, P., ČERNÁK, M. (2019). Diffuse coplanar surface barrier discharge for cleaning and activation of galss substrate. In: Chemické Listy, Vol. 106, 105013.
  13. TALVISTE, R., GALMIZ, O., STUPAVSKÁ, M., RÁHEĽ, J. (2020). Effect od DCSBD plasma treatment distance on surface characteristics of wood and thermally modified wood. In: Wood Science and Technology, Vol. 54, pp. 109 - 112. Go to original source...
  14. KOHUTIAR, M., JANÍK, R., KRBAŤA, M., BARTOSOVA, L., JUS, M., TUMÁROVÁ, Ľ. (2023). Study of the effect of pretreatment of 3D printed PLA filament modified by plasma discharge and changes in its dynamic-mechanical properties. In: Manufacturing Technology, Vol. 23, pp. 461 - 467. Go to original source...
  15. KOLÁŘOVÁ, K., VOSMANSKÁ, V., RIMPELOVÁ, S., ŠVORČÍK, V. (2013). Effect of plasma treatment on cellulose fiber. In: Cellulose, Vol. 20, pp. 953 - 961. Go to original source...
  16. ERCEGOVIC RAŽIC, S., ČUNKO, R., BAUTISTA, L., BUKOŠEK, V. (2017). Plasma effect on the chemical structure of cellulose fabric for modification of some functional properties. In: Procedia Engineering, Vol. 200, pp. 333 - 340. Go to original source...
  17. VALÁŠEK, P., MÜLLER, M., ŠLEGER, V. (2017). Influence of plasma treatment on mechanical properties of cellulosed-based fibres and their interfacial interaction in composites systems. In: BioResources, Vol. 12, pp. 5449 - 5461. Go to original source...
  18. MORALES-CORONA, J., OLAYO, M. G., CRUZ, G. J., HERRERA-FRANCO, P., OLAYO, R. (2006). Plasma modification of cellulose fibres for composites materials. In: Journal of Applied Polymer Science, Vol. 101, pp. 3821 - 3828. Go to original source...
  19. AHLBLAD, G., KRON, A., STENBERG, B. (1994). Effects of plasma treatment on mechanical properties of rubber/cellulose fibre composites. In: Polymer International, Vol. 33, pp. 103 - 109. Go to original source...
  20. HOMOLA, T., BURŠÍKOVÁ, V., SŤAHEL, P., ČERNÁK, M. (2014). Diffuse coplanar surface barrier discharge pre-treatment for improving coating properties. In: Materials from the Nanokon, pp. 437-440.
  21. DESMET, T., MORENT, T., DE GEYTER, N., LEYS, C., SCHACHT, E., DUBRUEL, P. (2009). Non-thermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. In: Biomacromolecules, Vol. 10, pp. 2351 - 2378. Go to original source...
  22. CALVIMONTES, A., MAUERSBERGER, P., NITSCHKE, M., DUTSCHK, V., SIMON, F. (2011). Effects of oxygen plasma on cellulose surface. In: Cellulose, Vol. 18, pp. 803 - 809. Go to original source...
  23. LEDUC, M., GUAY, D., LEASK, R., COULOMBE, S. (2009). Cell permeabilization using a non-thermal plasma. In: New Journal of Physics, Vol. 11, 115021. Go to original source...
  24. Zemljič, L.F., PERŠIN, Z., STENIUS, P. (2009). Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. In: Biomacromolecules, Vol. 10, pp. 1181 - 1187. Go to original source...
  25. VALÁŠEK, P., MÜLLER, M., ŠLEGER, v. (2017). Influence of Plasma Treatment on Mechanical Properties of Cellulose-based fires and their interfacial interaction in composites systems. In: BioResources. Vol. 12, pp. 5449 - 5461. Go to original source...
  26. SIAVASHANI, V., VALIPOUR, P., HAGHIGHAT, E. (2014). The influence of corona discharge treatment on the properties of cotton and polyester-cotton knitted fabrics. In: Fibers and Polymers, Vol. 15, pp. 729 - 735. Go to original source...
  27. EPELLE, E., MACFARLANE, A., CUSACK, M., BURNS, A., OKOLIE, J., MACKAY, W., YASEEN, M. (2022). Ozone application in different industries: A review of recent developments. In: Chemical Engineering Journal, Vol. 454, 140188. Go to original source...
  28. PARVINZADEH, M., EBRAHIMI, I. (2011). Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone. In: Applied Surface Science, Vol. 257, Is. 9, pp. 4062 - 4068. Go to original source...
  29. MAQSOOD, H., BASHIR, U., WIENER, J., PUCHALSKI, M., SZTAJNOWSKI, S., MILITKY, J. (2017). Ozone treatment of jute fibers. In: Cellulose, Vol. 24 pp. 1543 - 1553. Go to original source...
  30. SHOLEH PUJOKARONI, A., OHTANI, Y., ICHIURA, H. (2020). Ozone treatment for improving the solubility of cellulose extracted from palm fiber. In: Journal of Applied Polymer Science, Vol. 138, 49610. Go to original source...
  31. PUJOKARONI, A., OHTANI, A., ICHIURA, H. (2021). Ozone treatment for improving the solubility of cellulose extracted from palm fiber. In: Journal of Applied Polymer Science, Vol. 138, Is. 1, 49610. Go to original source...
  32. TRIPATHI, S., BHARDWAJ, N., ROY, A. (2020). Developments in ozone-based bleaching of pulps. In: Ozone: Science & Engineering, Vol. 42, Is. 2, pp. 194 - 210. Go to original source...
  33. VALLS, C., CUSOLA, O., BLANCA RONCERO, M. (2022). Evaluation the potential of ozone in creating functional groups on cellulose. In: Cellulose, Vol. 29, pp. 6595 - 6610. Go to original source...
  34. BORUVKA, M., NGAOWTHONG, C., CERMAN, J., LENFELD, P., BRDLIK, P. (2016). The influence of surface modification using low-pressure plasma treatment on PE-LLD/α-cellulose composite properties. In: Manufacturing Technology, Vol. 16, pp. 29 - 34. Go to original source...
  35. VALÁŠEK, P., AMBARITA, H. (2018). Material usage of oil-palm empty fruit bunch (EFB) in polymer composite systems. In: Manufacturing Technology, Vol. 18, pp. 686 - 691 Go to original source...
  36. KAZEMI, H., MIGHRI, F., FRIKHA, S., RODRIGUE, D. (2022). In: Rubber Chemistry and Technology, Vol. 95, pp. 128 - 146. Go to original source...
  37. HUANG, Y., XIAO, Y., LI, B., GONG, Z., XU, Y., XU, Z., WANG, Y., LI, W. (2024). Application of plasma-activated silanized cellulose nanofibres in natural rubber composites. In: Journal of Applied Polymer Science, Vol. 141, e55398. Go to original source...
  38. ZOUBEK, M., KUDLACEK, J., CHABERA, P., ABRAMOV, A. (2018). Complex control method of de-greasing process. In: Advances in Manufacturing, pp. 575 - 585. Go to original source...
  39. WANG, H., ZHAO, L., REN, J., HE, B. (2022). Structural Changes of Alkali Lignin under Ozone Treatment and Effect of Ozone-Oxidized Alkali Lignin on Cellulose Digestibility. In: Processes, Vol. 10, 559. Go to original source...
  40. VALLS, C., CUSOLA, O., RONCERO, M. (2022). Evaluating the potential of ozone in creating functional groups on cellulose. In: Cellulose, Vol. 29, pp. 6595 - 6610. Go to original source...
  41. ONDRUŠOVÁ, D., LABAJ, I., PAJTÁŠOVÁ, M., VRŠKOVÁ, J., FERIANCOVÁ, A., SKALKOVÁ, P. (2021). Targeted modification of the composition of polymer systems for industrial applications. In: Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 69, Is 2, 136721 Go to original source...
  42. KOLÁŘOVÁ, K., VOSMANSKÁ, V., RIMPELOVÁ, S., ŠVORČÍK, V. (2013). Effect of plasma treatment on cellulose fiber. In: Cellulose, Vol. 20, pp. 953-961 Go to original source...
  43. ONDRUŠOVÁ, D., BOŽEKOVÁ, S., BUŇOVÁ, L., PAJTÁŠOVÁ, M., LABAJ, I., DUBEC, A., VRŠKOVÁ, J. (2018). Modification of alternative additives and their effect on the rubber properties. In: MATEC Web of Conferences, Vol. 157, pp. 07007 Go to original source...
  44. ZHANG, L., CHAORAN, M., Jiajia, F. (2022) Effect of ozone treatment on the chemical and mechanical properties of flax fibers. In: Industrial Crops and Products, Vol. 189, 115694 Go to original source...
  45. DINESH; KUMAR, B.; KIM, J. (2023) Mechanical and Dynamic Mechanical Behavior of the Lignocellulo-sic Pine Needle Fiber-Reinforced SEBS Composites. In: Polymers, Vol. 15, 1225. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.