Manufacturing Technology 2024, 24(4):700-709 | DOI: 10.21062/mft.2024.062

Microstructural Analysis, Corrosion Resistance, and Wear Performance Study of Al0.8FeCoNiCrCu0.5Si0.2 High-Entropy Alloy

Peng Zhang ORCID..., Yanzhou Li ORCID...
School of Mechanical and Vehicle Engineering, West Anhui University, Lu'an 237012, Anhui, China

The high-entropy alloy with the composition Al0.8FeCoNiCrCu0.5Si0.2 was produced through a pro-cess in-volving a vacuum arc melting method. Comprehensive characterization was performed through techniques such as XRD, SEM, and TEM. The findings revealed that the alloy primarily con-sists of Fe-Cr and Al-Ni phases, displaying predominantly two body-centered cubic structures. The alloy exhibited a characteristic dendritic cast structure. The alloy predominantly has high-angle grain boundaries accounting for 96.1%. Its grains demonstrate minimal internal strain and reduced lattice anomalies. The alloy showcased resistance with a corrosion current density of 1.4×10-7 A/cm2 and a corrosion potential of 0.28047 V. Post-corrosion examinations emphasized regions abundant in Al and Cu as the primary degradation sites. The addition of Si has further improved the alloy's resistance to corrosion. In terms of abrasion durability, the alloy exhibit-ed a wear scar length of only 1.42 mm, substantially less than the 1.88 mm found in 45# steel, highlighting its enhanced resistance to wear. This wear resistance is attributed to its inherent BCC1 and BCC2 phase structures and the hardness it derives from its unique composition. Owing to its superior traits, this high-entropy alloy presents promising potential for applications, including coatings, and advanced automotive components.

Keywords: Al0.8FeCoNiCrCu0.5Si0.2, Microstructure, Corrosion resistance, Wear resistance
Grants and funding:

This study was supported by the High-level Talents Research Project of West Anhui University (Grant No. WGKQ2021068), the Opening Project of Key Laboratory of Electric Drive and Control of Anhui Higher Education Institutes(DQKJ202006), the Crosswise Project of West Anhui University in 2020 ”Intelligent production line of metal composite board (sub-project)”(20201203), Crosswise Project of West Anhui University in 2021 ”Intelligent upgrade of high-speed turning center unit components”(20210330), Key Project of Natural Science Research in Universities of Anhui Province(KJ2021A0947), Key project of Natural Science Research in West Anhui University (WXZR202116)

Received: February 17, 2024; Revised: June 19, 2024; Accepted: June 20, 2024; Prepublished online: July 1, 2024; Published: September 1, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhang P, Li Y. Microstructural Analysis, Corrosion Resistance, and Wear Performance Study of Al0.8FeCoNiCrCu0.5Si0.2 High-Entropy Alloy. Manufacturing Technology. 2024;24(4):700-709. doi: 10.21062/mft.2024.062.
Download citation

References

  1. WU, C.S., TSAI, P.H., KUO, C.M., TSAI, C.W., (2018). Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys. ENTROPY, Vol. 20, No. 12, pp. https://doi.org/10.3390/e20120967 Go to original source...
  2. HUANG, Y., YEH, J.W., YANG, A.C.M., (2021). "High-entropy polymers": A new route of polymer mixing with suppressed phase separation. MATERIALIA, Vol. 15, No. pp. https://doi.org/10.1016/j.mtla.2020.100978 Go to original source...
  3. LIN, P.T., WU, C.S., PENG, C.H., TSAI, C.W., SATO, Y.S., (2020). Effects of rotational speed on the Al<sub>0.3</sub>CoCrCu<sub>0.3</sub> FeNi high-entropy alloy by friction stir welding. HIGH TEMPERATURE MATERIALS AND PROCESSES, Vol. 39, No. pp. 556-566. https://doi.org/10.1515/htmp-2020-0046 Go to original source...
  4. PENG, C.H., TSAI, C.W., KUO, C.M., CHIU, S.M., (2022). High-Temperature Tribological Behavior of Al<sub>0.3</sub>Cr<sub>0.5</sub>Fe<sub>1.5</sub>Mn<sub>0.5</sub>Ni High-Entropy Al-loys with Addition of Titanium and Carbon. FRONTIERS IN MATERIALS, Vol. 8, No. pp. https://doi.org/10.3389/fmats.2021.787729 Go to original source...
  5. PRUSA, F., KRATOCHVíL, P., THüRLOVá, H., RUDOMILOVA, D., MSALLAMOVá, S., (2023). Influence of the Mn Content on the Corrosion Behaviour of HEA CoCrFeNiMnX (X=5, 20, 35 at.%) Pre-pared via MA+SPS. MANUFACTURING TECHNOLOGY, Vol. 23, No. 2, pp. 247-253. https://doi.org/10.21062/mft.2023.016 Go to original source...
  6. SHEN, J.S., LEI, S., FANG, J.G., LIU, Y.F., HU, Z.Q., CUI, S.J., ZHANG, H.L., XUE, Z.W., (2023). Effect of High Temperature Heat Treatment on the Structure and Properties of FeCoCrNiZr Alloy. MANUFACTURING TECHNOLOGY, Vol. 23, No. 3, pp. 326-332. https://doi.org/10.21062/mft.2023.041 Go to original source...
  7. YEH, J.W., CHEN, S.K., LIN, S.J., GAN, J.Y., CHIN, T.S., SHUN, T.T., TSAU, C.H., CHANG, S.Y., (2004). Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, Vol. 6, No. 5, pp. 299-303. https://doi.org/https://doi.org/10.1002/adem.200300567 Go to original source...
  8. ZHANG, Z., ZHANG, J., ZHANG, M., PENG, P., (2022). First-principles calculations on brazed diamond with FeCoCrNi high entropy alloys doped with strong carbide-forming elements. Solid State Communications, Vol. 357, No. pp. 114980. https://doi.org/https://doi.org/10.1016/j.ssc.2022.114980 Go to original source...
  9. YU, Y., YU, Y., (2022). Simulations of irradiation resistance and mechanical properties under irradiation of high-entropy alloy NiCoCrFe. Materials Today Communications, Vol. 33, No. pp. 104308. https://doi.org/https://doi.org/10.1016/j.mtcomm.2022.104308 Go to original source...
  10. ALI, M.M., ABD ELMOAMEN, S.S., GEPREEL, M.A.H., AHMED, H.A., ELREFAIE, F.A., (2021). High temperature oxidation of non-equi-atomic Al5Cr12Fe35Mn28Ni20 high entropy alloy. Materials Research Express, Vol. 8, No. 3, pp. https://doi.org/10.1088/2053-1591/abeab9 Go to original source...
  11. ZHANG, C., ZHAO, Z., LIN, X., WANG, S., WANG, J., LI, Y., LI, Y., ZHANG, Y., ZHAO, H., (2024). Molybdenum-14Rhenium Alloy-The Most Promising Candidate for High-Temperature Semi-conductor Substrate Materials. Journal of Alloys and Compounds, Vol. No. pp. 174391. https://doi.org/https://doi.org/10.1016/j.jallcom.2024.174391 Go to original source...
  12. ZHU, Z.X., LIU, X.B., LIU, Y.F., ZHANG, S.Y., MENG, Y., ZHOU, H.B., ZHANG, S.H., (2023). Effects of Cu/Si on the microstructure and tribological properties of FeCoCrNi high entropy alloy coating by laser cladding. WEAR, Vol. 512, No. pp. https://doi.org/10.1016/j.wear.2022.204533 Go to original source...
  13. ZHOU, Z., LI, H., LIU, Y., NIU, T., LI, H., (2022). Effect of Ti on the corrosion behavior of (FeCrCo-Ni)100-xTix alloy. Corrosion Science, Vol. 209, No. pp. 110807. https://doi.org/https://doi.org/10.1016/j.corsci.2022.110807 Go to original source...
  14. ZHANG, X., LIU, L., YAO, K.D., DUAN, K., WU, F.F., ZHAO, R.D., ZHANG, Y., SHANG, J., CHEN, M.H., (2022). The evolution of eutectic microstructure and mechanical properties of Alx-CoCrFeNi2.1 high-entropy alloys. JOURNAL OF MATERIALS RESEARCH, Vol. 37, No. 12, pp. 2082-2092. https://doi.org/10.1557/s43578-022-00620-3 Go to original source...
  15. WAN, Q., HUA, K., ZHOU, Z., ZHANG, F., WU, H., ZHOU, Q., WANG, H., (2023). Revealing the B addition on tribology performance in TiZrHfTa0.5 refractory high-entropy alloy at ambient and elevated temperature. Journal of Alloys and Compounds, Vol. 931, No. pp. 167521. https://doi.org/https://doi.org/10.1016/j.jallcom.2022.167521 Go to original source...
  16. XU, T., CHEN, Q.J., JI, L., ZHENG, Z.D., WANG, K., LIU, H.Y., (2023). BCC/B2 structure and dis-location strengthening behavior in high Ti content TiAlVCrNb high-entropy alloys. JOURNAL OF ALLOYS AND COMPOUNDS, Vol. 956, No. pp. https://doi.org/10.1016/j.jallcom.2023.170179 Go to original source...
  17. ZHANG, Y.P., CHEN, X.Z., JAYALAKSHMI, S., SINGH, R.A., DEEV, V.B., PRUSOV, E.S., (2021). Factors determining solid solution phase formation and stability in CoCrFeNiX0.4 (X=Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing. JOURNAL OF ALLOYS AND COMPOUNDS, Vol. 857, No. pp. https://doi.org/10.1016/j.jallcom.2020.157625 Go to original source...
  18. STRAKOSOVA, A., KRATOCHVíL, P., RIEDL, J., PRUSA, F., (2022). Phase and Mechanical Properties Response of the Mechanically Alloyed CoCrFeNiAlX High Entropy Alloys. MANUFACTURING TECHNOLOGY, Vol. 22, No. 4, pp. 471-476. https://doi.org/10.21062/mft.2022.059 Go to original source...
  19. XIA, S.Q., XIA, Z.X., ZHAO, D., XIE, Y., LIU, X., WANG, L., (2021). Microstructure formation mechanism and corrosion behavior of FeCrCuTiV two-phase high entropy alloy prepared by different processes. FUSION ENGINEERING AND DESIGN, Vol. 172, No. pp. https://doi.org/10.1016/j.fusengdes.2021.112792 Go to original source...
  20. LI, H.Y., ZHANG, Y.J., DESTECH PUBLICAT, I. Effect of Ti Content on Microstructure and Proper-ties on AlCrCoFeNiTi<sub>x</sub> High Entropy Alloys. In 2016 INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE AND ENGINEERING APPLICATION (ICMSEA 2016), 2016.
  21. CAO, Y.K., LIU, Y., LIU, B., ZHANG, W.D., (2018). Precipitation behavior during hot deformation of powder metallurgy Ti-Nb-Ta-Zr-Al high entropy alloys. INTERMETALLICS, Vol. 100, No. pp. 95-103. https://doi.org/10.1016/j.intermet.2018.06.007 Go to original source...
  22. EISSMANN, N., KLöDEN, B., WEISSGäRBER, T., KIEBACK, B., (2017). High-entropy alloy CoCrFeMnNi produced by powder metallurgy. POWDER METALLURGY, Vol. 60, No. 3, pp. 184-197. https://doi.org/10.1080/00325899.2017.1318480 Go to original source...
  23. GLUDOVATZ, B., HOHENWARTER, A., CATOOR, D., CHANG, E.H., GEORGE, E.P., RITCHIE, R.O., (2014). A fracture-resistant high-entropy alloy for cryogenic applications. Vol. 345, No. 6201, pp. 1153-1158. https://doi.org/doi:10.1126/science.1254581 Go to original source...
  24. DENG, Y., TASAN, C.C., PRADEEP, K.G., SPRINGER, H., KOSTKA, A., RAABE, D., (2015). Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, Vol. 94, No. pp. 124-133. https://doi.org/https://doi.org/10.1016/j.actamat.2015.04.014 Go to original source...
  25. A, A.M., A, S.S., B, S.H., B, N.F.J.J.O.A., COMPOUNDS, (2016). Heat treatment impacts the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Vol. 683, No. pp. 221-230. Go to original source...
  26. SCHNEIDER, M., GEORGE, E.P., MANESCAU, T.J., ZáLEZáK, T., HUNFELD, J., DLOUHY, A., EGGELER, G., LAPLANCHE, G., (2020). Analysis of strengthening due to grain boundaries and an-nealing twin boundaries in the CrCoNi medium-entropy alloy. INTERNATIONAL JOURNAL OF PLASTICITY, Vol. 124, No. pp. 155-169. https://doi.org/10.1016/j.ijplas.2019.08.009 Go to original source...
  27. ZHAO, Y.Y., CHEN, H.W., LU, Z.P., NIEH, T.G., (2018). Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)<sub>94</sub>Ti<sub>2</sub>Al<sub>4</sub> high-entropy alloy. ACTA MATERIALIA, Vol. 147, No. pp. 184-194. https://doi.org/10.1016/j.actamat.2018.01.049 Go to original source...
  28. MA, Y., WANG, Q., JIANG, B.B., LI, C.L., HAO, J.M., LI, X.N., DONG, C., NIEH, T.G., (2018). Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al<sub>2</sub>(Ni,Co,Fe,Cr)<sub>14</sub> compositions. ACTA MATERIALIA, Vol. 147, No. pp. 213-225. https://doi.org/10.1016/j.actamat.2018.01.050 Go to original source...
  29. SLONE, C.E., MIAO, J., GEORGE, E.P., MILLS, M.J., (2019). Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures. ACTA MATERIALIA, Vol. 165, No. pp. 496-507. https://doi.org/10.1016/j.actamat.2018.12.015 Go to original source...
  30. XIAO, J.K., TAN, H., CHEN, J., MARTINI, A., ZHANG, C., (2020). Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiC<sub>x</sub> high-entropy alloys. JOURNAL OF ALLOYS AND COMPOUNDS, Vol. 847, No. pp. https://doi.org/10.1016/j.jallcom.2020.156533 Go to original source...
  31. HE, M.W., EIZADJOU, M., CHEN, H.S., LIU, H.W., CHANG, L., RINGER, S.P., (2022). Microstructure and properties of CoCrFeN based multi-principal element alloys containing C and Sc. JOURNAL OF MATERIALS SCIENCE, Vol. 57, No. 20, pp. 9442-9453. https://doi.org/10.1007/s10853-022-07227-3 Go to original source...
  32. SEKHAR, R.A., SHIFIN, A.S., FIROZ, N., (2021). Microstructure and mechanical properties of AlCo-CrNiTi-C High Entropy Alloy processed through Spark Plasma Sintering. MATERIALS CHEMISTRY AND PHYSICS, Vol. 270, No. pp. https://doi.org/10.1016/j.matchemphys.2021.124846 Go to original source...
  33. LIN, C.M., TSAI, H.L., BOR, H.Y., (2010). Effect of aging treatment on microstructure and properties of high-entropy Cu<sub>0.5</sub>CoCrFeNi alloy. INTERMETALLICS, Vol. 18, No. 6, pp. 1244-1250. https://doi.org/10.1016/j.intermet.2010.03.030 Go to original source...
  34. XU, Z.Q., MA, Z.L., TAN, Y., WANG, M., ZHAO, Y., CHENG, X.W.J.J.O.A., SCIENCE, C.A.I.J.O.M., CHEMISTRY, S.-S., PHYSICS, (2022). Effects of Si additions on microstructures and mechanical properties of VNbTiTaSix refractory high-entropy alloys. Vol. No. 900-, pp. 900. Go to original source...
  35. XIN, J.M., JUNHU %J JOURNAL OF ALLOYS, SCIENCE, C.A.I.J.O.M., CHEMISTRY, S.-S., PHYSICS, (2021). Improving mechanical properties and tribological performance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys via doping Si. Vol. 869, No. 1, pp. Go to original source...
  36. LI, Y.Z., SHI, Y., OLUGBADE, E., (2020). Microstructure, mechanical, and corrosion resistance properties of Al<sub>0.8</sub>CrFeCoNiCu<sub>x</sub> high-entropy alloy coatings on aluminum by laser cladding. MATERIALS RESEARCH EXPRESS, Vol. 7, No. 2, pp. https://doi.org/10.1088/2053-1591/ab6c9b Go to original source...
  37. LI, Y.Z., SHI, Y., (2021). Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding. OPTICS AND LASER TECHNOLOGY, Vol. 134, No. pp. https://doi.org/10.1016/j.optlastec.2020.106632 Go to original source...
  38. LU, Y.P., DONG, Y., JIANG, H., WANG, Z.J., CAO, Z.Q., GUO, S., WANG, T.M., LI, T.J., LIAW, P.K., (2020). Promising properties and future trend of eutectic high entropy alloys. SCRIPTA MATERIALIA, Vol. 187, No. pp. 202-209. https://doi.org/10.1016/j.scriptamat.2020.06.022 Go to original source...
  39. LI, Y., WANG, X., SHI, Z., LIANG, J., (2023). Phase Structure, Microstructure, Corrosion, and Wear Resistance of Al0.8CrFeCoNiCu0.5 High-Entropy Alloy. Vol. 11, No. 9, pp. 358. Go to original source...
  40. ZHANG, Y., CHEN, Z., CAO, D.D., ZHANG, J.Y., ZHANG, P., TAO, Q., YANG, X.Q., (2019). Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCo-CrCuFeNi high-entropy alloy. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, Vol. 8, No. 1, pp. 726-736. https://doi.org/10.1016/j.jmrt.2018.04.020 Go to original source...
  41. ROCHE, V., CHAMPION, Y., BATAEV, I.A., JORGE, A.M., (2022). Passive film formation on the new biocompatible non-equiatomicTi21Nb24Mo23Hf17Ta15 high entropy alloy before and after resting in simulated body fluid. CORROSION SCIENCE, Vol. 207, No. pp. https://doi.org/10.1016/j.corsci.2022.110607 Go to original source...
  42. LU, C.W., LU, Y.S., LAI, Z.H., YEN, H.W., LEE, Y.L., (2020). Comparative corrosion behavior of Fe<sub>50</sub>Mn<sub>30</sub>Co<sub>10</sub>Cr<sub>10</sub> dual-phase high-entropy alloy and CoCrFeMnNi high-entropy alloy in 3.5 wt% NaCl solution. JOURNAL OF ALLOYS AND COMPOUNDS, Vol. 842, No. pp. https://doi.org/10.1016/j.jallcom.2020.155824 Go to original source...
  43. LEE, C.P., CHEN, Y.Y., HSU, C.Y., YEH, J.W., SHIH, H.C., (2008). Enhancing pitting corrosion resistance of Al<i><sub>x</sub></i>CrFe<sub>1.5</sub>MnNi<sub>0.5</sub> high-entropy al-loys by anodic treatment in sulfuric acid. THIN SOLID FILMS, Vol. 517, No. 3, pp. 1301-1305. https://doi.org/10.1016/j.tsf.2008.06.014 Go to original source...
  44. ZHAO, R.F., REN, B., CAI, B., LIU, Z.X., ZHANG, G.P., ZHANG, J.J., (2019). Corrosion behavior of Co<sub>x</sub>CrCuFeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution. RESULTS IN PHYSICS, Vol. 15, No. pp. https://doi.org/10.1016/j.rinp.2019.102667 Go to original source...
  45. ZHANG, Z.J., YUAN, T.C., LI, R.D., (2020). Striped Non-Uniform Corrosion Behavior of Non-Equiatomic FeMnCoCr High-Entropy Alloy Prepared by Laser Melting Deposition in 0.1 M H<sub>2</sub>SO<sub>4</sub> Solution. MATERIALS, Vol. 13, No. 23, pp. https://doi.org/10.3390/ma13235554 Go to original source...
  46. LI, Z.Z., ZHAO, S.T., RITCHIE, R.O., MEYERS, M.A., (2019). Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. PROGRESS IN MATERIALS SCIENCE, Vol. 102, No. pp. 296-345. https://doi.org/10.1016/j.pmatsci.2018.12.003 Go to original source...
  47. VERMA, A., TARATE, P., ABHYANKAR, A.C., MOHAPE, M.R., GOWTAM, D.S., DESHMUKH, V.P., SHANMUGASUNDARAM, T., (2019). High temperature wear in CoCrFeNiCu<sub>x</sub> high entropy alloys: The role of Cu. SCRIPTA MATERIALIA, Vol. 161, No. pp. 28-31. https://doi.org/10.1016/j.scriptamat.2018.10.007 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.