Manufacturing Technology 2024, 24(5):765-778 | DOI: 10.21062/mft.2024.085

Quantification and Verification of Swingarm Structural characteristics through Numerical Simulation and Photogrammetry

Lukas Gregor ORCID..., Jan Zouhar ORCID..., Radim Kupcak ORCID...
Department of Machining Technology, Institute of Manufacturing Technology, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, Brno 616 69, Czech Republic

Composite materials have consistently been applied in areas where a combination of properties such as strength, stiffness, and low weight is crucial. Motorcycle construction is no exception, as these parameters significantly impact riding characteristics, safety, and overall performance. This article focuses on quantifying the torsional and vertical stiffness of a single-sided swingarm made of carbon fiber reinforced polymer (CFRP) using finite element analysis (FEA) and verifying these results through experimental measurements. To enhance the accuracy of the simulations, which involve complex geometries and anisotropic materials, the material properties of selected fabrics used in the prototype production were measured. Specific fixtures were designed for the experimental measurements, enabling the application of torsional moments and vertical forces. Deformation under these loads was evaluated using the TRITOP photogrammetric system, which tracks deformations by monitoring the displacement of reference points under static load conditions and comparing them to a reference, unloaded state. Based on the acquired data, the overall stiffness values and their distribution along the length of the swingarm were calculated. The results showed a significant difference between simulation and reality. For the overall torsional stiffness, the simulated value was 249 N·m/°, while the measured was 270 N·m/°, showing a discrepancy of 7.7%. The vertical stiffness value from simulation was 414 N/mm, compared to 411 N/mm from experimental measurements, with a minimal difference of -0.7%. The stiffness distribution along the length of the swingarm exhibited a correlation, but with notable variation in certain areas. This confirms that accurately simulating CFRP parts with complex geometries is highly challenging, partly due to the sensitivity of the manufacturing process. Therefore, verification through experimental measurement is considered good practice.

Keywords: Swingarm, Torsional stiffness, CFRP, Photogrammetry, Stiffness distribution
Grants and funding:

This research study was supported by the grant “Modern Technologies for the Processing of Advanced Materials Used for Interdisciplinary Applications”, FSI-S-22-7957

Received: June 6, 2024; Revised: August 27, 2024; Accepted: October 22, 2024; Prepublished online: November 26, 2024; Published: November 28, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Gregor L, Zouhar J, Kupcak R. Quantification and Verification of Swingarm Structural characteristics through Numerical Simulation and Photogrammetry. Manufacturing Technology. 2024;24(5):765-778. doi: 10.21062/mft.2024.085.
Download citation

References

  1. LAKE, K., THOMAS, R., WILLIAMS, O. (2012). The influence of compliant chassis components on motorcycle dynamics: an historical overview and the potential future impact of carbon fibre. In: Vehicle System Dynamics, Vol. 50, No. 7, pp. 1043-1052. ISSN 0042-3114. Dostupné z: doi:10.1080/00423114.2011.647824 Go to original source...
  2. SHARP, R. S. (1971). The Stability and Control of Motorcycles. In: Journal of Mechanical Engineering Science, Vol. 13, No. 5, pp. 316-329. ISSN 0022-2542. Dostupné z: doi:10.1243/JMES_JOUR_1971_013_051_02 Go to original source...
  3. COSSALTER, V., DALLA, G., LOT, R., MASSARO, M. (2009). An advanced multi-body model for the analysis of motorcycle dynamics. R. China.
  4. SCHIEHLEN, W. (1990). Multibody Systems Handbook. 1st ed. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-50997-1. Dostupné z: doi:10.1007/978-3-642-50995-7 Go to original source...
  5. COSSALTER, V. (2006). Motorcycle dynamics. 2nd English ed. Lulu. ISBN 978-1-4303-0861-4.
  6. KULÍŠEK, V. (2021). Výpočty kompozitních komponent pomocí metody konečných prvků. In: . Praha. 5. červenec 2021.
  7. EVANGELOU, S., LIMEBEER, D. J. N., SHARP, R. S., SMITH, M. C. (2006). An H-Loop-Shaping Approach to Steering Control for High-Performance Motorcycles. In: Control of Uncertain Systems: Modelling, Approximation, and Design, pp. 257-275. Springer-Verlag, Berlin/Heidelberg. Dostupné z: doi:10.1007/11664550_14 Go to original source...
  8. SHARP, R. S., ALSTEAD, C. J. (1980). The Influence of Structural Flexibilities on the Straight-running Stability of Motorcycles. In: Vehicle System Dynamics, Vol. 9, No. 6, pp. 327-357. ISSN 0042-3114. Dostupné z: doi:10.1080/00423118008968629 Go to original source...
  9. SPLERINGS, P. T. J. (1981). The Effects of Lateral Front Fork Flexibility on the Vibrational Modes of Straight-Running Single-Track Vehicles. In: Vehicle System Dynamics, Vol. 10, No. 1, pp. 21-35. ISSN 0042-3114. Dostupné z: doi:10.1080/00423118108968633 Go to original source...
  10. LIMEBEER, D. J. N., SHARP, R. S. (2006). Bicycles, motorcycles, and models. In: IEEE Control Systems, Vol. 26, No. 5, pp. 34-61. ISSN 1066-033X. Dostupné z: doi:10.1109/MCS.2006.1700044 Go to original source...
  11. KANE, T. R. (1978). The Effect of Frame Flexibility on High Speed Weave of Motorcycles. Dostupné z: doi:10.4271/780306 Go to original source...
  12. SHARP, R. S., EVANGELOU, S., LIMEBEER, D. J. N. (2004). Advances in the Modelling of Motorcycle Dynamics. In: Multibody System Dynamics, Vol. 12, No. 3, pp. 251-283. ISSN 1384-5640. Dostupné z: doi:10.1023/B.0000049195.60868.a2 Go to original source...
  13. VERMA, M. K., SCOTT, R. A., SEGEL, L. (1980). Effect of Frame Compliance on the Lateral Dynamics of Motorcycles. In: Vehicle System Dynamics, Vol. 9, No. 4, pp. 181-206. ISSN 0042-3114. Dostupné z: doi:10.1080/00423118008968622 Go to original source...
  14. ROE, G. E., THORPE, T. E. (1989). The Influence of Frame Structure on the Dynamics of Motorcycle Stability. Dostupné z: doi:10.4271/891772 Go to original source...
  15. COSSALTER, V., LOT, R., MASSARO, M. (2007). The influence of frame compliance and rider mobility on the scooter stability. In: Vehicle System Dynamics, Vol. 45, No. 4, pp. 313-326. ISSN 0042-3114. Dostupné z: doi:10.1080/00423110600976100 Go to original source...
  16. LOT, R., COSSALTER, V., MASSARO, M. (2005). The significance of frame compliance and rider mobility on the motorcycle stability. In: Multibody dynamics.
  17. SHARP, R. S. (1974). The Influence of Frame Flexibility on the Lateral Stability of Motorcycles. In: Journal of Mechanical Engineering Science, Vol. 16, No. 2, pp. 117-120. ISSN 0022-2542. Dostupné z: doi:10.1243/JMES_JOUR_1974_016_021_02 Go to original source...
  18. FOALE, T. (2002). Motorcycle handling and chassis design: the art and the science.
  19. SMITH, B., KIENHOFER, F. (2014). Development of a carbon fibre swingarm. In: 9th South African Conference on Computational and Applied Mechanics, SACAM 2014.
  20. THEDE, P., PARKS, L. (2010). Race Tech's Motorcycle Suspension Bible. Quarto Publishing Group USA. ISBN 1610591666.
  21. TARABORRELLI, L., FAVARON, V., DORIA, A. (2017). The effect of swingarm stiffness on motorcycle stability: experimental measurements and numerical simulations. In: International Journal of Vehicle Systems Modelling and Testing, Vol. 12, No. 3-4, pp. 240-261. ISSN 1745-6436. Dostupné z: doi:10.1504/IJVSMT.2017.089981 Go to original source...
  22. ARMENTANI, E., FUSCO, S., PIROZZI, M. (2007). Numerical evaluation and experimental tests for a road bike swingarm. In: Science and Motor Vehicles JUMV International Automotive Conference with Exhibition.
  23. RISITANO, G., SCAPPATICCI, L., GRIMALDI, C., MARIANI, F. (2012). Analysis of the Structural Behaviour of Racing Motorcycle Swingarms. Dostupné z: doi:10.4271/2012-01-0207 Go to original source...
  24. FEARNEY, P. (2020). The man who pioneered carbon fibre F1 cars: still saving lives today. In: Motor Sport Magazine.
  25. PURVIS, B. (2014). Carbon-fibre bikes - a potted history. In: Motorcycle News.
  26. CAPSONI, D., BINI, M., FERRARI, S., MUSTARELLI, P. (2015). Lithium-Air Batteries Based on Carbon Nanomaterials. In: Carbon Nanomaterials for Advanced Energy Systems, pp. 385-405. John Wiley & Sons, Inc, Hoboken, NJ. Dostupné z: doi:10.1002/9781118980989.ch12 Go to original source...
  27. NAQVI, A. A., ZAHOOR, A., SHAIKH, A. A., BUTT, F. A., RAZA, F., AHAD, I. U. (2022). Aprotic lithium air batteries with oxygen-selective membranes. In: Materials for Renewable and Sustainable Energy, Vol. 11, No. 1, pp. 33-46. ISSN 2194-1459. Dostupné z: doi:10.1007/s40243-021-00205-w Go to original source...
  28. ZHU, K., WANG, C., CHI, Z., KE, F., YANG, Y., WANG, A., WANG, W., MIAO, L. (2019). How Far Away Are Lithium-Sulfur Batteries From Commercialization? In: Frontiers in Energy Research, Vol. 7. ISSN 2296-598X. Dostupné z: doi:10.3389/fenrg.2019.00123 Go to original source...
  29. NOVUS. (2023). Novus bike. Novus GmbH. Dostupné z: https://novusbike.com/bike-2/
  30. Samurai bike. (2024). Dostupné z: https://www.denzel.bike/samurai/
  31. JEC Observer (2023). Overview of the global composites market 2022-2027.
  32. JEC Observer (2023). PRESS KIT 2 JEC Observer * PRESS KIT *.
  33. ZOUHAR, J., SLANÝ, M., SEDLÁK, J., JOSKA, Z., POKORNÝ, Z., BARÉNYI, I., MAJERÍK, J., FIALA, Z. (2022). Application of Carbon-Flax Hybrid Composite in High Performance Electric Personal Watercraft. In: Polymers, Vol. 14, No. 9, p. 1765. ISSN 2073-4360. Dostupné z: doi:10.3390/polym14091765 Go to original source...
  34. KUPČÁK, R., ZOUHAR, J. (2020). Application of composite materials in sports optics. In: Manufacturing Technology, Vol. 20, No. 2, pp. 200-209. ISSN 12132489. Dostupné z: doi:10.21062/mft.2020.038 Go to original source...
  35. VILIŠ, J., POKORNÝ, Z., ZOUHAR, J., JOPEK, M. (2022). Ballistic Resistance of Composite Materials Tested by Taylor Anvil Test. In: Manufacturing Technology, Vol. 22, No. 5, pp. 610-616. ISSN 12132489. Do-stupné z: doi:10.21062/mft.2022.074 Go to original source...
  36. ODOM, E. M. (1982). Design and fabrication of a motorcycle swingarm utilizing composite materials. United States -- Wyoming. Dostupné z: https://www.proquest.com/dissertations-theses/design-fabrication-motorcycle-swingarm-utilizing/docview/303245778/se-2?accountid=17115 Go to original source...
  37. TAFAGHODI HELALI, H., GRAFINGER, M. (2016). The precision of FEM simulation results compared with theoretical composite layup calculation. In: Composites Part B: Engineering, Vol. 95, pp. 282-292. ISSN 13598368. Dostupné z: doi:10.1016/j.compositesb.2016.04.003 Go to original source...
  38. AIROLDI, A., BERTOLI, S., LANZI, L., SIRNA, M., SALA, G. (2012). Design of a Motorcycle Composite Swing-Arm by Means of Multi-objective Optimisation. In: Applied Composite Materials, Vol. 19, No. 3-4, pp. 599-618. ISSN 0929-189X. Dostupné z: doi:10.1007/s10443-011-9227-6 Go to original source...
  39. RAO, H. M., KANG, J., HUFF, G., AVERY, K., SU, X. (2017). Impact of Rivet Head Height on the Tensile and Fatigue Properties of Lap Shear Self-Pierced Riveted CFRP to Aluminum. In: SAE International Journal of Materials and Manufacturing, Vol. 10, No. 2, pp. 2017-01-0477. ISSN 1946-3987. Dostupné z: doi:10.4271/2017-01-0477 Go to original source...
  40. LI, L. (2004). Failure analysis of aluminum alloy swing arm welded joints. In: Journal of Failure Analysis and Prevention, Vol. 4, No. 3, pp. 52-57. ISSN 1547-7029. Dostupné z: doi:10.1007/s11668-996-0015-9 Go to original source...
  41. SWOLFS, Y., VERPOEST, I., GORBATIKH, L. (2019). Recent advances in fibre-hybrid composites: mate-rials selection, opportunities and applications. In: International Materials Reviews, Vol. 64, No. 4, pp. 181-215. ISSN 0950-6608. Dostupné z: doi:10.1080/09506608.2018.1467365 Go to original source...
  42. HARRIS, C. E., STARNES, J. H., SHUART, M. J. (2002). Design and Manufacturing of Aerospace Compo-site Structures, State-of-the-Art Assessment. In: Journal of Aircraft, Vol. 39, No. 4, pp. 545-560. ISSN 0021-8669. Dostupné z: doi:10.2514/2.2992 Go to original source...
  43. GUPTA, M. K., SRIVASTAVA, R. K. (2016). Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. In: Polymer-Plastics Technology and Engineering, Vol. 55, No. 6, pp. 626-642. ISSN 0360-2559. Dostupné z: doi:10.1080/03602559.2015.1098694 Go to original source...
  44. ZHANG, W., XU, J. (2022). Advanced lightweight materials for Automobiles: A review. In: Materials & Design, Vol. 221, p. 110994. ISSN 02641275. Dostupné z: doi:10.1016/j.matdes.2022.110994 Go to original source...
  45. ZHU, L., LI, N., CHILDS, P. R. N. (2018). Light-weighting in aerospace component and system design. In: Propulsion and Power Research, Vol. 7, No. 2, pp. 103-119. ISSN 2212540X. Dostupné z: doi:10.1016/j.jppr.2018.04.001 Go to original source...
  46. KUPČÁK, R., ZOUHAR, J., VILIŠ, J., GREGOR, L., HRUŠECKÁ, D. (2023). Precision and Dimensional Stability of Bonded Joints of Carbon-Fibre-Reinforced Polymers Parts. In: Applied Sciences, Vol. 13, No. 18, p. 10413. ISSN 2076-3417. Dostupné z: doi:10.3390/app131810413 Go to original source...
  47. ABRAHAM, D., MATTHEWS, S., MCILHAGGER, R. (1998). A comparison of physical properties of glass fibre epoxy composites produced by wet lay-up with autoclave consolidation and resin transfer moulding. In: Composites Part A: Applied Science and Manufacturing, Vol. 29, No. 7, pp. 795-801. ISSN 1359835X. Dostupné z: doi:10.1016/S1359-835X(98)00055-4 Go to original source...
  48. BAQERSAD, J., POOZESH, P., NIEZRECKI, C., AVITABILE, P. (2017). Photogrammetry and optical methods in structural dynamics - A review. In: Mechanical Systems and Signal Processing, Vol. 86, pp. 17-34. ISSN 08883270. Dostupné z: doi:10.1016/j.ymssp.2016.02.011 Go to original source...
  49. LIU, T., BURNER, A. W., JONES, T. W., BARROWS, D. A. (2012). Photogrammetric techniques for aerospace applications. In: Progress in Aerospace Sciences, Vol. 54, pp. 1-58. ISSN 03760421. Dostupné z: doi:10.1016/j.paerosci.2012.03.002 Go to original source...
  50. JONES, R. M. (2018). Mechanics of Composite Materials. CRC Press. ISBN 9781315272986. Dostupné z: doi:10.1201/9781498711067 Go to original source...
  51. JURAČKA, J. Kompozitní konstrukce v letectví.
  52. ASTM INTERNATIONAL. (2002). D 3039/D 3039M - 00.
  53. ASTM INTERNATIONAL. (2017). E 132 - 97 Standart test method for poisson's ratio at room temperature.
  54. TEKIELI, M., DE SANTIS, S., DE FELICE, G., KWIECIEŃ, A., ROSCINI, F. (2017). Application of Digital Image Correlation to composite reinforcements testing. In: Composite Structures, Vol. 160, pp. 670-688. ISSN 02638223. Dostupné z: doi:10.1016/j.compstruct.2016.10.096 Go to original source...
  55. HLIVA, V., SZEBÉNYI, G. (2023). Non-Destructive Evaluation and Damage Determination of Fiber-Reinforced Composites by Digital Image Correlation. In: Journal of Nondestructive Evaluation, Vol. 42, No. 2. ISSN 15734862. Dostupné z: doi:10.1007/s10921-023-00957-7 Go to original source...
  56. HOLMES, J., SOMMACAL, S., DAS, R., STACHURSKI, Z., COMPSTON, P. (2023). Digital image and volume correlation for deformation and damage characterisation of fibre-reinforced composites: A review. In: Composite Structures, Vol. 315, p. 116994. ISSN 0263-8223. Dostupné z: doi:https://doi.org/10.1016/j.compstruct.2023.116994 Go to original source...
  57. BOGUSZ, P. (2023). Digital Image Correlation Analysis of Strain Fields in Fibre-Reinforced Polymer-Matrix Composite under ±45° Off-Axis Tensile Testing. In: Polymers, Vol. 15, No. 13. ISSN 20734360. Dostupné z: doi:10.3390/polym15132846 Go to original source...
  58. DUFOUR, J. E., COLANTONIO, G., BOUVET, C., PÉRIÉ, J. N., PASSIEUX, J. C., SERRA, J. (2023). Monitoring structural scale composite specimens in a post-buckling regime: The integrated finite element stereo digital image correlation approach with geometrically non-linear regularization Monitoring structural scale composite specimens in post-buckling regime: the Integrated Finite-Element Stereo Digital Image Correlation approach with geometrically non-linear regularization. Dostupné z: doi:10.1111/str.12450 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.