Manufacturing Technology 2025, 25(1):24-36 | DOI: 10.21062/mft.2025.008
Assessment of the Possibility of Using the Continuous Wavelet Transform and Fourier Transform to Analyse Geometric Structures Obtained on the Surface of Turned High-Molecular Polymers
- Wrocław University of Science and Technology, Faculty of Mechanical Engineering, wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland
The article presents the possibilities of using wavelet transform and fast Fourier analysis (FFT) to evaluate the signal collected during roughness measurement. During the tests, high-density polyeth-ylene was turned using variable cutting parameters. During cutting, the tool feed was changed to ob-tain roughness structures of different types and with varying degrees of anisotropy. The measured roughness profiles were filtered with Daubechies 6 (db6), Morlet and "Mexican Hat" wavelets and examined using Fourier analysis. The research carried out shows how the machining conditions affect the surface condition and the stability of the cutting process under variable machining conditions for high molecular weight polymers. The effectiveness of the continuous wavelet transform (CWT), sup-plemented with data obtained from Fourier analysis, in identifying places and detecting the nature of disturbances in the generated roughness signal is also shown.
Keywords: Wavelet analysis, Fourier analysis, Roughness, Polymers, Turning
Received: July 2, 2024; Revised: December 20, 2024; Accepted: March 1, 2025; Prepublished online: March 26, 2025; Published: April 25, 2025 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- SOORI, M., JOUGH, F. K. G., DASTRES, R., & AREZOO, B. (2024). Robotical automation in CNC machine tools: a review. acta mechanica et automatica, 18(3).
Go to original source...
- LAURO, C. H., et al. "Monitoring and processing signal applied in machining processes-A re-view." Measurement 58 (2014): 73-86.
Go to original source...
- GEISLER J. (edit.): Low-density polyethylene : properties and applications. Nova Science Publishers, New York 2020 (157 pages). ISBN : 1-5361-8273-7.
- KARANIA R., KAZMER D.: Low volume plastics manufacturing strategies. American Society of Me-chanical Engineers. Design Engineering Division, 118 A (2005) 1, 265-274.
Go to original source...
- CIENKA A., CIECIŃSKA B.: Optimization of laser cutting conditions of polypropylene and polypro-pylene with talc. Physics for Economy. Oficyna Wydawnicza Politechniki Rzeszowskiej. Rzeszów 4/2021, pp.5-15.
- LAZAREVIĆ D., MADIĆ M., JANKOVIĆ P., LAZAREVIĆ A.: Cutting parameters optimization for surface roughness in turning operation of polyethylene using Taguchi method. Tribology in Industry, 2012, 34(2): pp. 68/73.
- ABDUL SHUKOR J., SAID S., HARUN R., HUSIN S., KADIR AB.: Optimising of machining parame-ters of plastic material using Taguchi method. Advances in Materials and Processing Technologies (Ab-ingdon, England), 2016-01, Vol.2 (1), p.50-56. https://doi.org/10.1080/2374068X.2016.1143216
Go to original source...
- SALLES J., GONCALVES M.: Effects of Machining Parameters on Surface Quality of the Ultra High Molecular Weight Polyethylene. (2003) Materia, 8 (1), pp. 1/10.
- MO©ORINSKI, P., PRVULOVIC, S., JOSIMOVIC, L.: Determination of the optimal cutting parameters for machining technical plastics. Materiali in Tehnologije, 2020-01, Vol.54 (1), p.11-15.
Go to original source...
- OLEKSY M., ZABORNIAK M. , KOŁCZYK L.: Selection of cutting process parameters for selected models made of polymer materials. Sieć Badawcza Łukasiewicz - Instytut Mechanizacji Budownictwa i Górnictwa Skalnego. Wydawnictwo SIGMA-NOT. Przegl±d Mechaniczny 7-8/2018, pp. 57-60. (in Polish).
- HRBACKOVA L., SEDLAK J., CHROMJAKOVA F., MACUROVA L., JURICKOVA E., DOBROCKY D., SKERIK F.: Evaluation of the Effect of Machining Technologies on the Surface Tex-ture Analysis of Ertacetal C Polymer. Manufacturing Technology 2022, 22(6):679-692 DOI: 10.21062/mft.2022.083.
Go to original source...
- HAMLAOUI N. AZZOUZ S. CHAOUI K. AZARI Z. YALLESE M.-A.: Machining of tough polyeth-ylene pipe material: surface roughness and cutting temperature optimization. International Journal of Advanced Manufacturing Technology, 2017-09, vol.92 (5-8), p.2231-2245. https://doi.org/10.1007/s00170-017-0275-4
Go to original source...
- UYSAL A.: Anova optimization of drill bit temperature in drilling of pure and carbon black reinforced high density polyethylene. Journal of Engineering Studies and Research, 2019-09, vol.25 (3), p.44-50.
Go to original source...
- BADNARIK, M., MIZERA, A., OVSIK, M.: The Influence of Ionizing Beta Radiation on the Flamma-bility Index and Ignition Temperature of Thermoplastic Materials. Manufacturing Technology 2019. vol. 19(6):907-911. DOI: 10.21062/ujep/394.2019/a/1213-2489/MT/19/6/907
Go to original source...
- CEPOVA L., SOKOVA D., MALOTOVA S., GAPINSKI B., CEP R.: Evaluation of Cutting Forces and Surface Roughness after Machining of Selected Materials. Manufacturing Technology 2016, 16(1):45-48 DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/1/45.
Go to original source...
- MAJERÍK J., DUBOVSKÁ R., BA©KA I., JAMBOR J.: Experimental Investigation and Measurement of Surface Roughness and Cutting Forces while Turning AlCu3MgMnPb Aluminium Alloy. Manufacturing Technology 2018, 18(1):66-71 DOI: 10.21062/ujep/55.2018/a/1213-2489/MT/18/1/66.
Go to original source...
- MAJERÍK J., MAJERSKÝ J., CHOCHLÍKOVÁ H., BARÉNYI I., ESCHEROVÁ J., KUBASÁKOVÁ M.: Machining of M390 Microclean® and M398 Mircoclean® PM Steels - the Comparison of Cutting Forces and Surface Roughness. Manufacturing Technology 2023, 23(6):853-860 DOI: 10.21062/mft.2023.096
Go to original source...
- BIN Y., HONGJIAN W., KUNKUN F., CHONGLEI W. Prediction of Cutting Force and Chip For-mation from the True Stress-Strain Relation Using an Explicit FEM for Polymer Machining. Polymers, 2022-01, vol.14 (1), p.189. https://doi.org/10.3390/polym14010189
Go to original source...
- BIRUK-URBAN K., JÓZWIK J., BERE P.: Cutting Forces and 3D Surface Analysis of CFRP Milling. Advances in Science and Technology. Research Journal, 2022, vol. 16, no 2, pp. 206-215.
Go to original source...
- DOI: https://doi.org/10.12913/22998624/147338
Go to original source...
- [20] DUAN Z., LIU G., FAN X., TAO CHEN T.: Study on cutting force performance and cutting mechanism of Carbon Fiber Reinforced Polymer (CFRP) composites. Bulletin of the JSME. Journal of Advanced Mechanical Design, Systems and Manufacturing. vol.15, No.3, 2021. 10.1299/jamdsm.2021jamdsm0037
Go to original source...
- [21] LEE B. Y., TARNG Y. S.: Application of the Discrete Wavalet Transform to the Monitoring of Tool Failure in End Milling Using the Spindle Motor Current. International Journal of Advanced Manufactur-ing Technology, 15 (1999), pp: 238-243. https://doi.org/10.1007/s001700050062
Go to original source...
- [22] KOSICKA M.: Możliwo¶ci zastosowania falek Haara do analizy i optymalizacji układów napędowych. Prace Instytutu Elektrotechniki, Z. 214 (2002), 99-116. (in Polish)
- [23] ZAWADA-TOMKIEWICZ A:. Analiza obrazu powierzchni obrobionej do celów estymacji parametrów tej powierzchni. Acta Mechanica et Automatica, vol. 1 (2007), nr 2, 79-84. (in Polish)
- [24] TANGJITSITCHAROEN S., HARUETAI L.: Hybrid monitoring of chip formation and straightness in CNC turning by utilizing Daubechies Wavelet Transform. Procedia Manufacturing vol. 25 (2018) pp: 279-286. https://doi.org/10.1016/j.promfg.2018.06.084
Go to original source...
- [25] GARCIA PLAZA E., NUNEZ LOPEZ P. J.: Application of the wavelet packet transform to vibration signals for Surface roughness monitoring in CNC turning operations. Mechanical Systems and Signal Processing, vol. 98 (2018) pp.: 902-919. https://doi.org/10.1016/j.ymssp.2017.05.028
Go to original source...
- [26] Josso B., Burton D., LALOR M. J.: Frequency normalised wavelet transform for Surface roughness analysis and characterisation. Wear 252/5-6 (2002) pp.: 491-500. https://doi.org/10.1016/S0043-1648(02)00006-6
Go to original source...
- [27] CHANG C.-C., YU C.-P., Lin Y.: Distinction between crack echoes and rebar echoes based on Morlet Wavelet Transform of impact echo signals. NDT&E International, vol. 108 (2019), article number 102169.
Go to original source...
- [28] KARIMI H. R., PAWLUS W., ROBBERSMYR K. G.: Signal reconstruction, modeling and simulation of vehicle full-scale crash test based on Morlet wavelets. Neurocomputing, vol. 93 (2012), pp. 88-99. https://doi.org/10.1016/j.neucom.2012.04.010
Go to original source...
- [29] SABRI L., MEZGHANI S., MANSORI M., ZAHOUANI H.: Multiscale study of finish-honing process in pass production of cylinder liner. Wear, vol. 271, issues 3-4 (2011), pp. 509-513. https://doi.org/10.1016/j.wear.2010.03.026
Go to original source...
- [30] GRZESIK W., BROL S.: Wavelet and fractal approach to surface roughness characterization after finish turning of different workpiece materials. Journal of Materials Processing Technology, vol.209, issue 5 (2009), pp. 2522-2531. https://doi.org/10.1016/j.jmatprotec.2008.06.009
Go to original source...
- [31] LIU W.Y., HAN J.G.: The optimal Mexican hat wavelet filter denoisig method based on cross-validation method. Neurocomputing, vol. 108 (2013), pp.31-35. 10.1016/j.neucom.2012.11.010
Go to original source...
- [32] PAHUJA R.: RAMULU, M.: Surface quality monitoring in abrasive water jet machining of Ti6Al4V-CFRP stacks through wavelet packet analysis of acoustic emission signals. International Journal of Advanced Manufacturing Technology, 2019-10, Vol.104 (9-12), p.4091-4104. 10.1007/s00170-019-04177-0
Go to original source...
- [33] GARCÍA PLAZA E., NÚÑEZ LÓPEZ P.J.: Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning. Mechanical Systems and Signal Processing, 2018-01, Vol.98, p.634-651. https://doi.org/10.1016/j.ymssp.2017.05.006
Go to original source...
- [34] TIEN D.H., THOA P.T., DUY T. N.: Application of wavelet ratio between acoustic emission and cutting force signal decomposing in intelligent monitoring of cutting tool wear when turning SKD 61. International Journal on Interactive Design and Manufacturing, 2024, vol.18 (1), p.525-539. https://doi.org/10.1007/s12008-023-01571-7
Go to original source...
- [35] KAROLCZAK P.: Analysis of Cutting Forces with Application of the Discrete Wavelet Transform in Ti-tanium Ti6Al4V Turning. Manufacturing Technology 2023, 23(4):449-460 DOI: 10.21062/mft.2023.062.
Go to original source...
- [36] CABRERA C. G., ARAUJO A. C., CASTELLO D. A.: On the wavelet analysis of cutting forces for chatter identification in milling. Advances in Manufacturing, 2017-06, vol.5 (2), p.130-142. https://doi.org/10.1007/s40436-017-0179-4
Go to original source...
- [37] BATKO W., ZIÓŁKO M.: Zastosowanie teorii falek w diagnostyce technicznej. AGH Kraków 2002. (in Polish).
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.