Manufacturing Technology 2025, 25(1):45-56 | DOI: 10.21062/mft.2025.015

Comparison of Optical Scanners for Reverse Engineering Applications on Glossy Freeform Artifact Pharaoh

Michal Koptis ORCID..., Jiri Resl ORCID..., Jan Urban ORCID..., Jan Simota ORCID..., Jiri Kyncl ORCID..., Petr Mikes ORCID..., Libor Beranek ORCID...
Faculty of Mechanical Engineering, Czech Technical University in Prague. Technická 1902/4, 160 00 Praha 6. Czech Repubic

Article deals with analysis on influence of post-process settings profiles in the Polyworks software and its influence on measuring bias (difference between average surface profile deviation and artifact reference value) and standard deviation of measured data. The comparison was evaluated on glossy artifacts with freeform surfaces. Setting with least bias and standard deviation was than used to evaluate repeatability and systematic measurement error and minimum tolerance bandwidth Tmin according to VDA 5 and MSA 4, respectively for three conceptions of laser scanning technologies available on today’s market. Cartesian CMM LK Altera S with laser scanner Nikon LC15Dx (automated technology), Measuring arm Nikon MCAx S30 with laser scanner Nikon H120 (manual technology) and optically tracked handheld device Metronor M-Scan with laser scanner Nikon H120 (manual technology). The conclusions of the study can serve as a guide in technology selection for reverse engineering input data acquisition. Subsequently, the optimal parameters of the post-process settings (for glossy surfaces) in the Polyworks software are listed.

Keywords: Freeform reverse engineering, 3D laser scanners accuracy, Glossy artifact, Measurement capability

Received: December 5, 2024; Revised: March 2, 2025; Accepted: March 13, 2025; Prepublished online: March 27, 2025; Published: April 25, 2025  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Koptis M, Resl J, Urban J, Simota J, Kyncl J, Mikes P, Beranek L. Comparison of Optical Scanners for Reverse Engineering Applications on Glossy Freeform Artifact Pharaoh. Manufacturing Technology. 2025;25(1):45-56. doi: 10.21062/mft.2025.015.
Download citation

References

  1. KOPTIS Michal, Jan URBAN, Libor BERANEK, Jan SIMOTA a Petr MIKES. (2017). Application of Reverse Engineering Technology. Technological forum 2017 Book of proceedings. Jaromer, Czech Republic. ISBN 978-80-87583-22-7.
  2. WANG, Wego. (2010). Reverse Engineering. CRC Press. ISBN 9781439806319. doi:10.1201/EBK1439806302 Go to original source...
  3. GENG, Zhaohui, Arman SABBAGHI a Bopaya BIDANDA. (2023). Reconstructing original design: Process planning for reverse engineering. IISE Transactions, p. 509-522. ISSN 2472-5854. doi:10.1080/24725854.2022.2040761. Go to original source...
  4. BOUKHAROUBA, Taoufik, Fakher CHAARI, Mounir BEN AMAR, Krimo AZOUAOUI, Nourdine OUALI a Mohamed HADDAR, ed. (2019). Computational Methods and Experimental Testing. Mechanical Engineering. Cham: Springer International Publishing. Lecture Notes in Mechanical Engineering. ISBN 978-3-030-11826-6. Go to original source...
  5. DEJA, Mariusz, Micha³ DOBRZYNSKI a Marcin RYMKIEWICZ. (2019). Application of Reverse Engineering Technology in Part Design for Shipbuilding Industry. Polish Maritime Research. 26(2), 126-133. ISSN 2083-7429. doi:10.2478/pomr-2019-0032. Go to original source...
  6. TAM, Juliana a Kai YU. (2020). Mapping Based Calibration for Integrated Measuring System on Reverse Engineering of Freeform Shape. Computer-Aided Design and Applications, 18(4), 644-654. ISSN 16864360. doi:10.14733/cadaps.2021.644-654. Go to original source...
  7. TANG, Yongpeng, Yaonan WANG, Haoran TAN, Weixing PENG, He XIE a Xuebing LIU. (2023). A Digital Twin-Based Intelligent Robotic Measurement System for Freeform Surface Parts. IEEE Transactions on Instrumentation and Measurement, 72, 1-13. ISSN 0018-9456. doi:10.1109/TIM.2023.3261933. Go to original source...
  8. DHIPAKUMAR, R. (2019). Reverse Engineering in Mechanical Components. International journal of enginee-ring research & technology (IJERT) confcall. doi:10.17577/IJERTCONV7IS11103. Go to original source...
  9. AMROUNE, Salah, Ahmed BELAADI, Moussa MENASERI, Noureddine GEROSKI, Barhm MOHAMAD, Khalissa SAADA a Riyad BENYETTOU. (2021). MANUFACTURING OF RAPID PROTOTYPES OF MECHANICAL PARTS USING REVERSE ENGINEERING AND 3D PRINTING. Journal of the Serbian Society for Computational Mechanics. 167-176. ISSN 18206530. doi:10.24874/jsscm.2021.15.01.11. Go to original source...
  10. VERİM, Özgür a Ozan SEN. (2023). Application of reverse engineering method on agricultural machinery parts. International Advanced Research and Engineering Journal, 2023-04-15, 7(1), 35-40. ISSN 2618-575X. doi:10.35860/iarej.1188175. Go to original source...
  11. SHAH, Ghazanfar Ali, Arnaud POLETTE, Jean-Philippe PERNOT, Franca GIANNINI a Marina MONTI. (2022) User-Driven Computer-Assisted Reverse Engineering of Editable CAD Assembly Models. Journal of Computing and Information Science in Engineering. ISSN 1530-9827. doi:10.1115/1.4053150. Go to original source...
  12. MARZOOG, R J, A A ALDUROOBI a S S AL-ZUBAIDY. (2020). Surface segmentation and reconstruction in reverse engineering. IOP Conference Series: Materials Science and Engineering. 2020-07-01, 881(1). ISSN 1757-8981. doi:10.1088/1757-899X/881/1/012082. Go to original source...
  13. VORKAPIC, Milos, Danijela ZIVOJINOVIC, Dragan KRECULJ, Toni IVANOV, Marija BALTIC a Aleksandar SIMONOVIC. (2023). Application of additive technology and reverse engineering in the realisation of damaged obsolete parts. FME Transactions, 51(1), 31-38. ISSN 1451-2092. doi:10.5937/fme2301031V. Go to original source...
  14. MISHCHUK, Yevhen, Andriy SOROCHENKO a Yevhen BEREZOVSKY. (2023). Use of reverse enginee-ring methods in the process of restoration of machine parts. Gіrnichі, budіvelnі, dorozhnі ta melіorativnі mashini. (101), 53-59. ISSN 2709-6149. doi:10.32347/gbdmm.2023.101.0501. Go to original source...
  15. LI, Fei a Jackrit SUTHAKORN. (2022). Application of CAD Technology in Extracting Line Feature of Industrial Part Image. Journal of Control Science and Engineering. ISSN 1687-5257. doi:10.1155/2022/6372168. Go to original source...
  16. KACMARCIK, Josip, Nermina ZAIMOVIC-UZUNOVIC a Samir LEMES. Reverse Engineering Using 3D Scanning and FEM Analysis. In: KARABEGOVIC, Isak, ed. (2020). New Technologies, Development and Application III. Cham: Springer International Publishing, p. 285-291. Lecture Notes in Networks and Systems. ISBN 978-3-030-46816-3. doi:10.1007/978-3-030-46817-0_32. Go to original source...
  17. HARDING, Kevin G., Song ZHANG, B. BOECKMANS, G. PROBST, M. ZHANG, W. DEWULF a J.-P. KRUTH. (2016). ISO 10360 verification tests applied to CMMs equipped with a laser line scanner. 986805. doi:10.1117/12.2227061. Go to original source...
  18. SYKORA, J., I. LINKEOVA a P. SKALNIK. (2023). Freeform digital twin approach to develop the HP 300 freeform verification standard. Measurement. 218. ISSN 02632241. doi: 10.1016/j.measurement.2023.113227. Go to original source...
  19. MATUS, Miroslav, Vladimir BECHNY, Richard JOCH, Mario DRBUL, Jozef HOLUBJAK, Andrej CZAN, Martin NOVAK a Michal SAJGALIK. (2023). Geometric Accuracy of Components Manufactured by SLS Technology Regarding the Orientation of the Model during 3D Printing. Manufacturing Technology, 233-240. ISSN 12132489. Go to original source...
  20. TIMKO, Pavol, Jozef HOLUBJAK, Vladimír BECHNY, Martin NOVAK, Andrej CZAN a Tatiana CZANOVA. (2023). Surface Analysis and Digitization of Components Manufactured by SLM and ADAM Additive Technologies. Manufacturing Technology, 127-134. ISSN 12132489. Go to original source...
  21. LINKEOVA, Ivana a Marta HLAVOVA. (2022). CTU freeform standard Pharaoh. Proceedings of the Czech Slovak Conference on Geometry and Graphics. Olomouc: 42nd Conference on Geometry and Graphics, 2022. ISBN 978-80-86843-79-7. https://csgg2022.upol.cz/files/gcg_2022-online.pdf.
  22. VERBAND DER AUTOMOBIL INDUSTRIE E.V. (VDA). (2021). VDA 5 - Measurement and inspection Processes. 3. Prague: CSQ s.r.o.
  23. AIAG STRORE. Measurement system analysis MSA. 4. Prague: Czech Society for Quality, 2011, 231 p. ISBN 978-80-02-02323-5.
  24. HUMIENNY, Zbigniew. Can ISO GPS and ASME (2021) Tolerancing Systems Define the Same Functional Requirements. Applied Sciences. 11(17). ISSN 2076-3417. doi:10.3390/app11178269. Go to original source...
  25. LI, Xuan, Zhiqiang LIU, Yudong CAI, Cunying PAN, Jiawei SONG, Jinshou WANG a Xiaopeng SHAO. (2023). Polarization 3D imaging technology. Frontiers in Physics. 2023-5-9, 11. ISSN 2296-424X. doi:10.3389/fphy.2023.1198457. Go to original source...
  26. FILIP, Jiri, Radomir VAVRA a Frank J. MAILE. (2023). Waviness analysis of glossy surfaces based on deformation of a light source reflection. Journal of Coatings Technology and Research, 1703-1712. ISSN 1547-0091. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.