Manufacturing Technology 2025, 25(4):500-510 | DOI: 10.21062/mft.2025.050

Overcoming Rotary Mechanism Limitations in CNC Machines: A 3-PRS Approach

Rudolf Madaj ORCID..., Matú¹ Vere¹ ORCID..., Róbert Kohár ORCID..., Peter Weis ORCID..., Filip ©ulek
Faculty of Mechanical Engineering, University of ®ilina in ®ilina. Univerzitná 8215/1, 010 26 ®ilina. Slovak Republic

This paper presents the design and analysis of a 3-PRS mechanism for positioning cutting heads in CNC machines, addressing limitations of traditional rotary mechanisms such as hose twisting, wear, and limited modularity. Kinematic and dynamic analyses guided actuator selection and confirmed bearing durability. The mechanism achieves a favourable load-to-weight ratio and integrated Z-axis movement, making it suitable for simpler gantry CNC machines. Though programming is complex due to multiaxis synchronization, the modular design supports easy adaptation to different tools. Future research will focus on reducing the eccentric torch offset and refining dimensions to enhance versatility. The mechanism has strong potential in sectors like automotive, aerospace, and construction.

Keywords: Dynamic analysis, Engineering design, Kinematic analysis, Modular design, 3-PRS mechanism
Grants and funding:

The authors acknowledge the financial support from the project 1/0568/24: Research in the Area of Load and Stress-Strain States of Bearing Cages, which made this research possible

Received: June 6, 2025; Revised: September 24, 2025; Accepted: September 25, 2025; Prepublished online: November 10, 2025; Published: November 11, 2025  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Madaj R, Vere¹ M, Kohár R, Weis P, ©ulek F. Overcoming Rotary Mechanism Limitations in CNC Machines: A 3-PRS Approach. Manufacturing Technology. 2025;25(4):500-510. doi: 10.21062/mft.2025.050.
Download citation

References

  1. SAKTI, S. P., NURWARSITO, H., SUPRAYOGO, D., PRAYOGO, C., & KUSUMA, A. S. (2021). Automation of CNC Machinery in Improving Quality and Production Speed of Agricultural Product Processing Machinery Components. 6th In 2021 IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), pp.1-5, doi:10.1109/ICRAIE52900.2021.9704031 Go to original source...
  2. ZHANG, J. (2018). Research on CNC Lathe Programming and Improving Machining Accuracy. IOP Conf. Ser.: Mater. Sci. Eng. 452 042050, doi: 10.1088/1757-899X/452/4/042050 Go to original source...
  3. GHERGHEA, I. C., BUNGAU, C. & NEGRAU, D. C. (2019). Lead time reduction and increasing productivity by implementing lean manufacturing methods in cnc processing center. IOP Conf. Ser.: Mater. Sci. Eng. 568 012014, doi: 10.1088/1757-899X/568/1/012014 Go to original source...
  4. ZHAO, X. M., YANG, G. Y., & SHAO, H. (2004). The Influence of Cutting Edge Orientation and Spindle Motion Error on Machined Surface in Milling. In: Key Engineering Materials (Vols. 259-260, pp. 415-420). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/kem.259-260.415 Go to original source...
  5. WEN, J., XIE, F., LIU, X., & YUE, Y. (2023). Evolution and Development Trend Prospect of Metal Milling Equipment. Chin. J. Mech. Eng. 36, 33 (2023). https://doi.org/10.1186/s10033-023-00865-x Go to original source...
  6. ZAWADA-MICHA£OWSKA, M., PIE¦KO, P., & LEGUTKO, S. (2023). Effect of the cutting tool on the quality of a machined composite part. Manufacturing Technology 2023, 23(6):870-879. DOI: 10.21062/mft.2023.107 Go to original source...
  7. PADAYACHEE, J., & BRIGHT, G., (2012). Modular machine tools: Design and barriers to industrial implementation. Journal of Manufacturing Systems, 31, pp. 92-102. https://doi.org/10.1016/j.jmsy.2011.10.003 Go to original source...
  8. QUISPE, M., CASTILLO, C., CASTRO, J., & PONCE, A. (2023). Design and Implementation of a Pick and Place System Using a 4 DOF Robotic Arm Integrated into a Longitudinal Horizontal Movement Base. LACCEI, 1(8). https://doi.org/10.18687/LACCEI2023.1.1.794 Go to original source...
  9. KRIMPENIS, A. A., & IORDANIDIS, D. M. (2023). Design and analysis of a desktop multi-axis hybrid milling-filament extrusion CNC machine tool for non-metallic materials. Machines, 11(6), 637. https://doi.org/10.3390/machines11060637 Go to original source...
  10. WANG, D., WU, J., WANG, L. & LIU, Y. A Postprocessing Strategy of a 3-DOF Parallel Tool Head Based on Velocity Control and Coarse Interpolation. IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6333-6342, Aug. 2018, doi: 10.1109/TIE.2017.2784378. Go to original source...
  11. XIE, F., LIU, X. J., & WANG, J. (2012). A 3-DOF parallel manufacturing module and its kinematic optimisation. Robotics and Computer-Integrated Manufacturing, 28(3), 334-343. https://doi.org/10.1016/j.rcim.2011.10.003 Go to original source...
  12. BELORIT, M., HRCEK, S., GAJDOSIK, T., & STEININGER, J. (2017, September). Description of the bearing check program for countershaft gearboxes. In Proceding of 58th International Conference of Machine Design Departmens (ICDM) (pp. 32-35).
  13. YI, X., XU, T., MA, W., YAN, Z. & GAO, D. (2010). 5-axis CNC Whirlwind Milling Method on Helical Surfaces of PDM's Rotors, International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 2010, pp. 7-10, doi: 10.1109/ICMTMA.2010.498. Go to original source...
  14. YINTAO, H., JINWEI, W., BAIMING, L., & RONGSHENG, C. (2024, November). Research on Pro-cessing Precision of Multi-Frequency Plasma CNC Machining Centers. In 2024 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC) (pp. 1-3). IEEE. 10.1109/CSRSWTC64338.2024.10811520 Go to original source...
  15. CHU, A.M., LE, M. T., HOANG, N. H., et al. (2024). A framework for practically effective creation of postprocessors for 5-axis CNC machines with all possible configurations and working mechanisms. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2024;238(5):682-694. doi:10.1177/09544054231179314 Go to original source...
  16. XIONG, Q., & ZHOU, Q. (2020). Development Trend of NC Machining Accuracy Control Technology for Aeronautical Structural Parts. World Journal of Engineering and Technology. Vol(8). 10.4236/wjet.2020.83022 Go to original source...
  17. BAOYU, S., & HONGTAO, W. (2020). Kinematics analysis of a new parallel robotics. International Journal of Advanced Robotic Systems, 17(2), 1729881420919950. Go to original source...
  18. TUGEUMWOLACHOT, T., SEKI, H., TSUJI, T., & HIRAMITSU, T. (2022, August). Development of a multi-dof cutting tool with a foldable supporter for compact in-pipe robot. In 2022 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 587-592). IEEE. 10.1109/ICMA54519.2022.9856115 Go to original source...
  19. WU, H., KONG, L., LI, Q., WANG, H., & CHEN, G. (2023). A comparative study on kinematic calibra-tion for a 3-DOF parallel manipulator using the complete-minimal, inverse-kinematic and geometric-constraint error models. Chinese Journal of Mechanical Engineering, 36(1), 121. https://doi.org/10.1186/s10033-023-00940-3 Go to original source...
  20. ELGAMMAL, A. T., MAGDY, M., & LASHIN, M. (2024). Learning complex nonlinear dynamics of a 3D translational parallel manipulator using neural network. Heliyon, 10(18). 10.1016/j.heliyon.2024.e37669 Go to original source...
  21. GHASEMI, J., MORADINEZHAD, R., & HOSSEINI, M. A. (2019). Kinematic synthesis of parallel manipulator via neural network approach. arXiv preprint arXiv: 1904.04668.
  22. https://doi.org/10.48550/arXiv.1904.04668 Go to original source...
  23. [22] TLUSTY, J., ZIEGERT, J., & RIDGEWAY, S. (1999). Fundamental Comparison of the Use of Serial and Parallel Kinematics for Machines Tools. CIRP Annals. 48, pp. 351-356. https://doi.org/10.1016/S0007-8506(07)63200-4 Go to original source...
  24. [23] CÉZOVÁ, E. (2025). Demonstration of Neural Network in Prediction of Bearing Lifetime. Manufacturing Technology, 25(2), 170-173. DOI: 10.21062/mft.2025.017 Go to original source...
  25. [24] VISCHER, P., & CLAVEL, RE. (1998). Kinematic calibration of the parallel Delta robot. Robotica. 16. 207 - 218. 10.1017/S0263574798000538. Go to original source...
  26. [25] RUSSO, M., ZHANG, D., LIU, X., & XIE, Z. (2024). A review of parallel kinematic machine tools: Design, modeling, and applications. International Journal of Machine Tools and Manufacture. Vol. 196. https://doi.org/10.1016/j.ijmachtools.2024.104118 Go to original source...
  27. [26] WU, X. (2019). Optimal Design and Singularity Analysis of a Spatial Parallel Manipulator. Symmetry 11, no. 4: 551. https://doi.org/10.3390/sym11040551 Go to original source...
  28. [27] WANG, D., WU, J., WANG, L. & LIU, Y. A Postprocessing Strategy of a 3-DOF Parallel Tool Head Based on Velocity Control and Coarse Interpolation. IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6333-6342, Aug. 2018, doi: 10.1109/TIE.2017.2784378. Go to original source...
  29. [28] DRÍMALOVÁ, P., NOVÝ, F., UHRIÈÍK, M., VÁÒOVÁ, P., ©IKYÒA, L., CHVALNÍKOVÁ, V., & SLEZÁK, M. (2024). Effect of change in current density on hydrogen embrittlement of advanced high-strength steel S960MC during hydrogenation. Manufacturing Technology, 24(1), 40-46. DOI: 10.21062/mft.2024.010 Go to original source...
  30. [29] ENFERADI, J.,TAVAKOLIAN, M. (2017). Lagrangian Dynamics Analysis of a XY-Theta Parallel Robotic Machine Tool. Periodica Polytechnica Mechanical Engineering. 61(2), pp. 107-114, 2017. https://doi.org/10.3311/PPme.9368 Go to original source...
  31. [30] ÈERNOHLÁVEK, V., KLIMENDA, F., SUSZYNSKI, M., ©TÌRBA, J., & ZDRÁHAL, T. (2024). Opti-mizing Manufacturing Technology: Unraveling Symmetry in Cubic Equation Roots. Manufacturing Technology, 24(5), 731-737. DOI: 10.21062/mft.2024.077 Go to original source...
  32. [31] HAJDUCIK, A., SKRABALA, J., MEDVECKY, S., & BRUMERCIK, F. (2019). Kinematic Analysis of Trapezoidal Suspension. Scientific Journal of Silesian University of Technology-Series Transport. Vol.(104). Pp. 27-36. doi: 10.20858/sjsutst.2019.104.3 Go to original source...
  33. [32] ©TEININGER, J., HRÈEK, S., SMETANKA, L., & SKYBA, R. (2020). Optimisation procedure of inner geometry in spherical roller bearings with regard to their durability. Zeszyty Naukowe. Transport/Politechnika ¦l±ska. DOI 10.20858/sjsutst.2020.106.15. Go to original source...
  34. [33] CHEN, X., LIU, X-J., XIE, F., SUN, T. (2014) A Comparison Study on Motion/Force Transmissibility of Two Typical 3-DOF Parallel Manipulators: The Sprint Z3 and A3 Tool Heads. International Journal of Advanced Robotic Systems. 2014;11(1). doi:10.5772/57458 Go to original source...
  35. [34] BLATNICKÝ, M., DI®O, J., MOLNÁR, D., & ISHCHUK, V. (2023, August). Structural Design of a Rotary Valve Manipulator of Bulk Materials-Strength Design of Connecting Elements of the Frame and Trolley. In Manufacturing Technology 2024, 24(6):871-878. DOI: 10.21062/mft.2024.096 Go to original source...
  36. [35] YOUSSEF, F., & KASSNER, S. (2023). Kinematic Design. In: Kern, T.A., Hatzfeld, C., Abbasimoshaei, A. (eds) Engineering Haptic Devices. Springer Series on Touch and Haptic Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-04536-3_8 Go to original source...
  37. [36] PTC Inc. (2018). Ptc Creo Parametric TOOLKIT User's Guide. Retrieved from https://support.ptc.com/images/cs/articles/2018/05/1525425932uNM3/tkuse.pdf
  38. [37] SKF Group. (2019, 03). Valivá lo¾iska. SKF. https://cdn.skfmediahub.skf.com/api/public/0901d1968096351e/pdf_preview_medium/0901d1968096351e_pdf_preview_medium.pdf#cid-121486

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.