Manufacturing Technology 2014, 14(1):97-104 | DOI: 10.21062/ujep/x.2014/a/1213-2489/MT/14/1/97

Effect of the Inclination Angle on the Defining Parameters of Chip Removal in Rotational Turning

István Sztankovics, János Kundrák
Institute of Manufacturing Science, Faculty of Mechanical Engineering and Informatics, University of Miskolc, H-3515 Miskolc-Egyetemváros. Hungary

The efficiency of the machining processes, the accuracy of the manufactured parts, and the quality of the machined surface are determined by several factors: the tool geometry, the parameters that affect the kinematic relations, and the cutting parameters. Therefore it is necessary to investigate the effect of each characteristic parameter on the technological parameters in the research of rotational turning. In this paper first we sum up the geometric and kinematic relations that affect the defining parameters of chip removal. We give an overview of the parameters which must be given in rotational turning. We briefly show the method used for the mathematic-analytic definition of these parameters. After that we determinate and analyse the alteration effect of the inclination angle on the resultant axial feed, on the theoretical arithmetic mean deviation and on the characteristic parameters of the chip cross-section.

Keywords: rotational turning, chip removal characteristics, inclination angle

Published: March 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sztankovics I, Kundrák J. Effect of the Inclination Angle on the Defining Parameters of Chip Removal in Rotational Turning. Manufacturing Technology. 2014;14(1):97-104. doi: 10.21062/ujep/x.2014/a/1213-2489/MT/14/1/97.
Download citation

References

  1. BYRNE, G., DORNFELD, D., DENKENA, B. (2003). Advancing Cutting Technology. In: CIRP Annals - Manufacturing Technology, Vol. 52, Issue 2, pp. 483-507. Go to original source...
  2. SHAW, M. C. (2005). Metal Cutting Principles, 651 p., Oxford University P, New York
  3. BRECHNER, C., ESSER, M., WITT, S. (2009). Interaction of manufacturing process and machine tool. In: CIRP Annals - Manufacturing Technology, Vol 58, pp.588-607 Go to original source...
  4. MRKVICA, I., NESLU©AN, M., KONDERLA, R., JANO©, M. (2012). Cutting ceramic by turning of nickel alloy Inconel. In: Manufacturing Technology, Vol 12, No 13, pp.178-186 Go to original source...
  5. KAÇAL, A., YILDIRIM, F. (2013). High Speed Hard Turning of AISI S1(60WCrV8) Cold Work Tool Steel. In: Acta Polytechnica Hungarica, Vol. 10, No. 8, pp. 169-186
  6. GALANIS, N. I., MARKOPOULOS, A. P., GIANNAKOPOULOS, I. D., MANOLAKOS, D. E. (2013). Manufacturing of Femoral Heads from Ti-6Al-4V Alloy with High Speed Machining: 3D Finite element Modelling and Experimental Validation. In: Manufacturing Technology, Vol 13, No 4, pp.437-444 Go to original source...
  7. ČILLIKOVÁ, M., NESLU©AN, M., MIČIETOVÁ, A., MRÁZIK, J. (2012). Study of deformation Processes after Hard turning through Acoustic Emission. In Manufacturing Technology, Vol 12, No 12, pp.13-17 Go to original source...
  8. NOVAK, M. (2012). Surfaces with high precision of roughness after grinding. In: Manufacturing Technology, Vol 12, No 12, pp.66-70 Go to original source...
  9. MADL, J. (2012). Surface Properties in Precise and Hard Machining. In: Manufacturing Technology, Vol 12, No 13, pp. 158-166 Go to original source...
  10. JERSÁK, J., VRKOSLAVKOVÁ, L. (2013). The Influence of Process Fluids ont he Properties of the Surface Layer of Machined Components. In: Manufacturing Technology, Vol 13, No 4, pp.466-473 Go to original source...
  11. VARGA, G. (2014). Effects of Technological Parameters on the Surface Texture of Burnished Surfaces.In: Key Engineering Materials, Vol. 581: Precision Machining VII, pp: 403-408
  12. TSCHÄTSCH, H., DIETRICH, J. (2011). Praxis der Zerspantechnik, 393 p., Vieweg+ Teubner Verlag, Wiesbaden Go to original source...
  13. MBN 31007-7 (2002). Patent by Daimler Chrysler AG, Stuttgart
  14. KLIMENKO, S. A., MANOKHIN, A. S. (2009). Hard "Skiving" Turning. In: Journal of Superhard Materials, Vol 31, No 1, pp. 58-74 Go to original source...
  15. ARMAREGO, E. J. A., KARRI, V., SMITH, A. J. R. (1994). Fundamental studies of driven and self-propelled rotary tool cutting processes - I. Theoretical investigation. In: International Journal of Machine Tools and Manufacture, Vol 34, No 6, pp. 785-801 Go to original source...
  16. KISHAWY, H. A., WILCOX, J. (2003). Tool wear and chip formation during hard turning with self-propelled rotary tools. International Journal of Machine Tools and Manufacture, Vol 43, pp. 433-439 Go to original source...
  17. VASILKO, K., PILC, J. (2013). New Technologival Knowledge of the Rotary Turning Tool. In Manufacturing Technology, Vol 13, No 4, pp.471-475 Go to original source...
  18. SCHULZ, H. (1990). High Speed Turn-Milling - A new precision manufacturing technology for the machining of rotationally symmetrical workpieces. In: CIRP Annals Vol 39, No 1, pp. 621-640 Go to original source...
  19. SAVAS, V., OZAY, C. (2007). Analysis of the surface roughness of tangential turn-milling for machining with end milling cutter. Journal of Materials Processing Technology, Vol 186, pp. 279-283 Go to original source...
  20. J.G. Weisser Söhne GmbH & Co: Patent Anmeldung, St.Georgen, Germany, 2004
  21. KLOCKE, F., BERGS, T., DEGEN, F. (2013). Presentation of a novel cutting technology for precision machining of hardened, rotationally symmetric parts. In: Production Engineering, Vol. 7, Issue 2-3, pp. 177-184 Go to original source...
  22. Rotationsdrehen WELLEN - schneller geht's nicht! (2014) from http://www.mas-tools.de
  23. SZTANKOVICS, I., KUNDRÁK, J. (2013). Theoretical Value of Total Height of Profile in Rotational Turning. In: Applied Mechanics and Materials, Vol. 309, pp. 154-161 Go to original source...
  24. PEREPELICA, B. A. (1981). Otobrazsenija affinnogo prosztransztva v teorii formoobrazovanija poverhnosztej rezaniem. Harkov, p. 152, 1981
  25. KUNDRÁK, J., GYÁNI, K., DESZPOTH, I., SZTANKOVICS, I. (2012). Technology planning of hard turning in case of rotational feed. In: Proceedings of International Conference on Innovative Technologies, pp. 295-299
  26. SZTANKOVICS, I. (2013). Theoretical Value of Arithmetic Mean Deviation in Rotational Turning. In: Műszaki Tudományos Füzetek - Fiatal Műszakiak Tudományos Ülésszaka XVIII., pp. 391-394, (in Hun.)
  27. SZTANKOVICS, I., KUNDRÁK, J. (2014). Determination of the Chip Width and the Undeformed Chip Thickness in Rotational Turning. In: Key Engineering Materials, Vol. 581: Precision Machining VII, pp: 131-136 Go to original source...