Manufacturing Technology 2014, 14(1):116-122 | DOI: 10.21062/ujep/x.2014/a/1213-2489/MT/14/1/116

Finite Element Analysis of Crack Growth in Pipelines

Milan Žmindák, Jozef Meško, Zoran Pelagić, Andrej Zrak
Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 01026 Žilina. Slovak Republic

The paper presents a short crack theory together with the finite element method (FEM), which is used to model crack initiation during the operational phase of a pipeline. To simulate the crack, the virtual crack extension (VCE) method, implemented in the FE code, is used. This paper describes the modelling and simulation of a welded pipeline with initiated crack in the beginning. A FEM modelling procedure for analysing the stress intensity factors (SIF's) and J-integral for two practical problems is presented. For the first problem the commercial software ANSYS was used to calculate the crack parameters in a straight pipe with a radial crack. The second problem deals with an axial crack tip in the main pipe of a welded tubular Y-joint. For this problem numerical results for calculated crack parameters and contour integrals are presented. The parameters were calculated by commercial software ABAQUS. For J-integral evaluation, the region on the surface of the blunted notch should be used to define the crack front.

Keywords: FEM, XFEM, stress intensity factor, J-integral, pipelines

Published: March 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Žmindák M, Meško J, Pelagić Z, Zrak A. Finite Element Analysis of Crack Growth in Pipelines. Manufacturing Technology. 2014;14(1):116-122. doi: 10.21062/ujep/x.2014/a/1213-2489/MT/14/1/116.
Download citation

References

  1. CHIEW, S.P., LIE, S.T., LEE, C.K., HUANG, Z.W. (2001): Stress intensity factors for a surface crack in a tubular T-joint. In: Int. J. of pressure Vessels and Piping, 78, pp. 677-685. Go to original source...
  2. NOVAK, P., MESKO, J., ZMINDAK, M., (2013), Finite element implementation of Multi-Pass Fillet Weld with Phase Changes. In: Manufacturing Technology Vol. 13, No.1. Go to original source...
  3. G. VENKATACHALAM & R. HARICHANDRAN & S. RAJAKUMAR &C. DHARMARAJA & C. PANDIVELAN. Determination of J-integral and stress intensity factor using the commercial FE software ABAQUS in austenitic stainless steel (AISI 304) plates. In: Int. J. Adv. Manuf. Technol.
  4. MESKO, J., FABIAN, P., HOPKO, A., KONAR, R. (2011). Shape of heat source in simulation program SYSWELD using different types of gases and welding methods. In: Manufacturing Technology, Vol. XVI, No. 5.
  5. GAO, L., LIU, K.; LIU, Y. (2006): Applications of MLPG Method in Dynamic Fracture Problems. In: CMES: Computer Modeling in Engineering & Sciences, vol.12, No.3, pp. 181-195.
  6. MOHAMMADI, S., (2008). Extended Finite Element Method. Singapúr : Utopia Press PteLtd, 2008. 277 pp. Go to original source...
  7. SLADEK, J.; SLADEK, V.; KRIVACEK, J.; ZHANG, CH. (2005). Meshless Local Petrov-Galerkin Method for Stress and Crack Analysis in 3-D Axisymmetric FGM Bodies. In: CMES: Computer Modeling in Engineering & Sciences, vol. 8, No. 3, pp.259-270.
  8. APEL, T., STEINBACH, O. (2013) Advanced Finite Element Methods and Application, Springer-Verlag Berlin Heidelberg
  9. AKIN, J.S. (1976)., The generation of elements with singularities. In:Int. J. Numer. Meth. in Engng., 10, pp. 1249-1259. Go to original source...
  10. KUNA, M. (2013). Finite Elements in Fracture Mechanics: Theory-Numerics_Applications, Springer Science +Bussines Media.
  11. SLADEK, J, SLADEK, V., JAKUBOVICOVA, L. (2002). Application of Boundary Element Methods in Fracture Mechanics, University of Zilina, Faculty of Mechanical Engineering, Zilina, 2002.
  12. ZMINDAK, M., NOVAK, P., MESKO, J. (2010). Numerical simulation of arc welding processes with metallurgical transformations. Metallurgy, Vol. 49, No.2, pp. 595-599.
  13. SATTARI-FAR. I., FARAHI, M.R. (2009). Effect of the weld groove shape and pass number on residual stress in butt-welded pipes. In: International journal of Pressure vessels and Piping Vol. 86, pp. 723-731. Go to original source...
  14. KOVANDA, K., HOLUB, L., KOLARIK, L., KOLARIKOVA, M., VONDROUS, P., (2012). Experimental verification of FEM Simulation of GMAW bead on plate welding. Manufacturing Technology Vol.12, No. 12, pp. 30-33. Go to original source...
  15. NOVAK, P., MESKO, J., ZMINDAK, M., (2013). Finite element implementation of Multi-Pass Fillet Weld with Phase Changes. Manufacturing Technology Vol. 13, No.1. Go to original source...
  16. GDOUTS, E.E., RODOPOULOS, C.A., YATES, J.R., (2003). Problems of Fracture Mechanics and Fatigue : A solution Guide. Kluwer Academic Publishers. Go to original source...
  17. KONAR, R., MICIAN, M., (2012). Numerical simulation of residual stresses and distortions in butt weld in simulation program Sysweld. In: Comunications: scientific letters of the University of Žilina. Vol. 14, No. 3. pp. 49-54. ISSN 1335-4205. Žilina. Go to original source...
  18. KONAR, R., MICIAN, M., HOPKO, A., (2011). Analysis of boundary for the simulation of welding at the repair of gas pipelines with steel sleeve. In: Comunications: scientific letters of the University of Žilina. Vol. 13, No. 4. pp. 36-39. ISSN 1335-4205. Žilina. Go to original source...