Manufacturing Technology 2015, 15(1):99-105 | DOI: 10.21062/ujep/x.2015/a/1213-2489/MT/15/1/99

Analysis of the Influence of Initiating Inclusions on Fatigue Life of Plasma Nitrided Steels

Zbyněk Studený
Faculty of Military Technology, University of Defence, Kounicova 156/65, 662 10 Brno, Czech Republic

The analysis of non-metallic initiating inclusions in fatigue live field is studied. The testing material for experiments is CSN 41 5340 steel (corresponds to 41CrAlMo7-10 or 1.8509). This steel is suitable for plasma nitriding process. The samples were heat treated and subsequently plasma nitrided, then subjected to the fatigue bending rotation tests. According to the principle of the tests are the conditions set to constant speed and decreasd load to 107 cycles if does not the fatigue fracture of the sample happens. The thickness of the diffusional nitride layer has been won using the microhardness measuring from the surface to the core of the samples. Using the fractographic analysis the nucleation point of fatigue crack has been evaluated. In the case of initiating inclusions the size and the chemical composition was measured. Comparing the won data to the plasma nitriding proces new results have been obtained.

Keywords: Fatigue live, inclusion, plasma nitriding

Published: February 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Studený Z. Analysis of the Influence of Initiating Inclusions on Fatigue Life of Plasma Nitrided Steels. Manufacturing Technology. 2015;15(1):99-105. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/1/99.
Download citation

References

  1. LUKÁŠ, P., KUNZ, L. (2010). Fatigue 2010 Foreword. Procedia Engineering 2, p. 1 Go to original source...
  2. STUDENÝ, Z., HRUBÝ, V., HORÁK, V., (2012). Únavové zkoušky nitridovaných tyčí. Hutnické listy, sv. 65, č. 5, s. 30-34. ISSN 0018-8069.
  3. STUDENÝ, Z., KUSMIČ, D., (2014). Influence Of Inclusions Size On The Nitrided Components Fatigue Life. In: 23rd International Conference on Metallurgy and Materials. Brno: TANGER Ltd., Ostrava. ISBN 978-80-87294-52-9.
  4. MUGHRABI, H., (2010). Fatigue, an everlasting materials problem - still en vogue. Procedia Engineering 2, p. 3-26 Go to original source...
  5. GIANCANE, S., NOBILE, R., PANELLA, F. W., DATTOMA, V., (2010). Fatigue life prediction of notched components based on a new nonlinear Continuum Damage Mechanics model. Procedia Engineering 2, p. 1317-1325 Go to original source...
  6. SUGIMOTO, K., FIJI, D., YOSHIKAWA, N., (2010). Fatigue strength of newly developed high-strength low alloy TRIP-aided steels with good hardenability, Procedia Engineering 2, p. 359-362 Go to original source...
  7. HOLEMÁŘ, A., HRUBÝ, V., (1989). Plazmová nitridace v praxi, SNTL, Prague, ISBN 80-03-00001-7
  8. ČSN 42 0363 Zkoušky únavy kovů. Metodika zkoušení.
  9. ČSN 42 0368 Zkoušky únavy kovů. Statistické vyhodnocování výsledků zkoušek únavy kovů.
  10. MURAKAMI, Y. (2002). Metal Fatigue, Effect of small defects and nonmetallic inclusions. Elsevier publ., Oxford, UK.
  11. LAMBRIGHS, K., at col. (2010). Influence of non-metallic inclusions on the fatigue properties of heavily cold drawn steel wires. Procedia Engineering 2, p. 173-181. Go to original source...