Manufacturing Technology 2015, 15(4):567-571 | DOI: 10.21062/ujep/x.2015/a/1213-2489/MT/15/4/567

The Effect of Casting Technology on Fe Intermetallic Phases in Al-Si Cast Alloys

Lenka Kuchariková, Eva Tillová, Juraj Belan, Milan Uhríčik
Faculty of Mechanical Engineering, University of ®ilina. Univerzitná 8215/1, 010 26 ®ilina. Slovakia

The most widely used technologies of founding Al-Si cast alloys are gravitation and semi-centrifugal casting, casting under pressure and so on. The contribution deals with influence of different casting method on changes of Fe intermetallic phases. Casting into metallic mould and sand mould were used for experimental work for comparison Fe-rich formation. Fe is a common impurity that leads to the formation of complex Fe-rich intermetallic phases. The dominant phase is plate-shaped Al5FeSi. These phases are unwaited, because reduce properties of aluminium casting. The experimental materials have most common addition Mn. The addition of Mn may reduce Al5FeSi phase and promote formation Fe-rich phases Al15(FeMn)3Si2 in "skeleton like" or "Chinese script" form. This knowledge was confirmed. The present study is a part of larger research project.

Keywords: Aluminium Alloys, Casting Technology, Fe Intermetallic Phases, Quantitative Assesment

Published: September 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kuchariková L, Tillová E, Belan J, Uhríčik M. The Effect of Casting Technology on Fe Intermetallic Phases in Al-Si Cast Alloys. Manufacturing Technology. 2015;15(4):567-571. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/4/567.
Download citation

References

  1. GRAYSON, G. N., SCHAFFER, G. B., GRIFFITHS, J. R. (2007). Observations of oxide films on fatigue fracture surfaces of a sintered 2xxx series aluminium alloy. In: Materials Science and Engineering, A 454-455, pp. 99-103. Go to original source...
  2. WANG, E.R., HUI, X.D., WANG, S.S., ZHAO, Y.F., CHEN, G.L. (2010). Improved mechanical properties in cast Al-Si alloys by combined alloying of Fe and Cu. In: Materials Science and Engineering A 527, pp. 7878-7884 Go to original source...
  3. SAMUEL, A. M., SAMUEL, F. H., DOTY, H. W. (1996). Observations on the formation of b-Al5FeSi phase in 319 type Al-Si alloys. In: Journal of Materials Science, Vol. 31, pp. 5529-5539. Go to original source...
  4. UHRÍČIK, M., PALČEK, P., SOVIAROVÁ, A., SNOPIŃSKI, P. (2014). Change of internal friction on aluminium alloy with 10.1 % Mg dependence on the temperature. In: Manufacturing technology, Vol. 14, No. 3, pp. 467-470 Go to original source...
  5. SRIVATSAN, T. S., GURUPRASAD, G., VIJAY VESUDEVAN, K. (2008). The quasi static deformation and fracture behavior of aluminum alloy 7150. In: Materials and Design, Vol. 29, pp. 742-751 Go to original source...
  6. MILLER W.S., ZHUANG L., BOTTEMA J., WITTEBROOD A. J., SMET P. DE, HASZLER A., VIEREGGE A. (2000). Recent development in aluminium allos for the automotive industry. In: Materials Science and Engineering, A280, pp. 37-49 Go to original source...
  7. HURTALOVÁ, L., TILLOVÁ, E., CHALUPOVÁ, M., BELAN, J., VA©KO, A. (2014). Microstructure control of secondary A 231 cast alloy used in automotive industry. In: Manufacturing technology, Vol. 14, No. 3, pp. 326-333. Go to original source...
  8. RIOS, C. T., CARAM, R., BOLFARINI, C., BOTTA, W.J., KIMINAMI, C.S. (2003). Intermetallic compounds in the Al-Si-Cu system. In: Acta Microscopia, Vol. 12, pp. 77-82.
  9. LI, R. (1996). Solution heat treatment of 354 and 355 cast alloys. In: AFS Transaction, Vol. 26, pp. 777-783.
  10. PARAY, F., GRUZLESKI, J. E. (1994). Microstructure - mechanical property relationships in a 356 alloy. In: Cast Metals, Part I. Microstructure, Vol. 7, pp. 29-40. Go to original source...
  11. CACERES, C. H., SVENSON, I. L., TAYLOR, J. A. (2003). Strength-ductility behaviour of Al-Si-Cu-Mg casting alloys in T6 temper In: International Journal of Cast Metals Research, Vol. 15, pp. 531-543. Go to original source...
  12. WANG, Q. G., APELIAN, D., LADOS, D. A. (2001). In: Journal of Light Metals, Part II - Effect of microstructural constituents. Vol. 1, pp. 85-97. Go to original source...
  13. HURTALOVÁ, L., TILLOVÁ, E. (2013). Elimination of the negative effect of fe-rich intermetallic phases insecondary (recycled) aluminium cast alloy. In: Manufacturing technology, Vol. 13, No. 1, pp. 44-50. Go to original source...
  14. TAYLOR, J. A. (2004). The effect of iron in al-si casting alloys. In: 35th Australian Foundry Institute National Conference, Adelaide, South Australia, pp. 148-157.
  15. MOUSTAFA, M. A. (2009). Effect of iron content on the formation of ß-Al5FeSi and porosity in Al-Si eutectic alloys. In: Journal of Materials Processing Technology, Vol. 209, pp. 605-610. Go to original source...
  16. SEIFEDINE, S., JOHANSSON, S., SVENSSON, I. (2008). On the Role of Copper and Cooling Rates on the Microstructure, Defect Formations and Mechanical Properties of Al-Si-Mg Alloys. In: Materials Science and Engineering A, Vol. 490, pp. 385-390. Go to original source...
  17. TILLOVÁ, E., PANU©KOVÁ, M. (2008). Effect of solution treatment on intermetallic phase's morphology in alsi9cu3 cast alloy. In: Mettalurgija/Metabk, Vol. 47, No. 3, pp. 207-210.
  18. LI, R. X., LI, R. D., ZHAO, Y. H., HE, L. Z., LI, C. X., GUAN, H. R., HU, Z. Q. (2004). Age-hardening behaviour of cast Al-Si base alloy. In: Materials Letters, Vol. 58, pp. 2096-2101. Go to original source...
  19. WANG, E.R., HUI, X.D., CHEN, G.L. (2011). Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature. In: Materials and Design, Vol. 32, pp. 4333-4340 Go to original source...
  20. European Aluminium Association. Aluminium Casting Techniques - Sand Casting and Die Casting Processes. http://www.azom.com/article.aspx?ArticleID=1392#_Gravity_Casting, Available on-line 18.08.2015
  21. HURTALOVÁ, L., TILLOVÁ, E. (2009). Dissolution and melting of AL2Cu phase particles in recycled AlSi9Cu3 cast alloy. In: Materials engineering = Materiálové inľinierstvo. Vol. 16, No. 3a, pp. 110-115.