Manufacturing Technology 2015, 15(4):689-694 | DOI: 10.21062/ujep/x.2015/a/1213-2489/MT/15/4/689

Ni-Ti Alloys Produced by Powder Metallurgy

Pavel Salvetr, Pavel Novák, Hynek Moravec
University of Chemistry and Technology, Department of Metals and Corrosion Engineering, Technicka 5, 166 28 Prague 6, Czech Republic

This paper deals with the influence of alloying elements on the properties of Ni-Ti alloys. The base alloy was the binary alloy Ni-Ti with 54 wt. % Ni and 46 wt. % Ti. Alloying elements (aluminium, iron and vanadium) in an amount of 5 wt. % were added to this alloy. All samples have been prepared by the method of powder metallurgy - reactive sintering at 1100 °C for 20 minutes. Microstructure, phase composition (especially amount of the Ti2Ni phase), process of sintering and the formation temperature of intermetallic phase NiTi, transformation temperatures and mechanical properties have been examined in these alloys. The corrosion characteristics were measured on the Ni-Ti and NiTiV5 alloys.

Keywords: Ni-Ti, powder metallurgy, reactive sintering

Published: September 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Salvetr P, Novák P, Moravec H. Ni-Ti Alloys Produced by Powder Metallurgy. Manufacturing Technology. 2015;15(4):689-694. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/4/689.
Download citation

References

  1. K. OTSUKA, X. REN (2005). Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 50, 511-678. Go to original source...
  2. P. NOVÁK, A. ŠKOLÁKOVÁ, V. VOJTĚCH, A. KNAISLOVÁ, P. POKORNÝ, H. MORAVEC, J. KOPEČEK, M. KARLÍK, T. KUBATÍK. (2014). Application of Microscopy and X-ray Diffraction in Optimization of the Production of NiTi Alloy by Powder Metallurgy, Manufacturing Technology, 14. 387 - 392. Go to original source...
  3. Y. KAIEDA. (2003). Fabrication of composition-controlled TiNi shape memory wire using combustion synthesis process and the influence of Ni content on phase transformation behavior, Science and Technology of Advanced Materials, 4, 239-246. Go to original source...
  4. T. DUERIG, A. PELTON, C. TREPANIER. (2001). Nitinol, PART I Mechanisms and Behavior, SMST E-lastic newsletter.
  5. A.S. JABUR, J.T. AL-HAIDARY, E.S. AL-HASANI. (2013). Characterization of Ni-Ti shape memory alloys prepared by powder metallurgy, Journal of Alloys and Compounds, 578. 136-142. Go to original source...
  6. J. FRENZEL, Z. ZHANG, K. NEUKING, G. EGGELER (2004). High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles, Journal of Alloys and Compounds, 385. 214-223. Go to original source...
  7. N. NAYAN, GOVIND, C.N. SAIKRISHNA, K.V. RAMAIAH, S.K. BHAUMIK, K.S. NAIR, M.C. (2007). Mittal, Vacuum induction melting of NiTi shape memory alloys in graphite crucible, Materials Science and Engineering: A, 465. 44-48. Go to original source...
  8. L.M. SCHETKY, M.H. WU. (2003). Issues in the Further Development of Nitinol Properties And Processing for Medical Device Applications, in: ASM Materials & Processes for Medical Devices Conference, Anaheim, pp. 271.
  9. M.H. WU. (2001). Fabrication of Nitinol Materials and Components, in: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, Kunming, China, pp. 285-292. Go to original source...
  10. V. KUČERA, J. ČAPEK, A. MICHALCOVÁ, D. VOJTĚCH (2014). Preparation and Characterization of NiTi Shape Memory Alloy Prepared by Powder Metallurgy, Manufacturing Technology, 14. 342-347. Go to original source...
  11. P. NOVÁK, A. MICHALCOVÁ, I. MAREK, M. VODĚROVÁ, D. VOJTĚCH (2012). Possibilities of the observation of chemical reactions during the preparation of intermetallics by reactive sintering, Manufacturing Technology, 12. 197 - 201. Go to original source...
  12. M. KAYA, N. ORHAN, B. KURT, T.I. KHAN. (2009). The effect of solution treatment under loading on the microstructure and phase transformation behavior of porous NiTi shape memory alloy fabricated by SHS, Journal of Alloys and Compounds, 475. 378-382. Go to original source...
  13. P. NOVÁK, L. MEJZLÍKOVÁ, A. MICHALCOVÁ, J. ČAPEK, P. BERAN, D. VOJTĚCH. (2013). Effect of SHS conditions on microstructure of NiTi shape memory alloy, Intermetallics, 42. 85-91. Go to original source...
  14. P. NOVÁK, P. POKORNÝ, V. VOJTĚCH, A. KNAISLOVÁ, A. ŠKOLÁKOVÁ, J. ČAPEK, M. KARLÍK, J. KOPEČEK. (2015). Formation of Ni-Ti intermetallics during reactive sintering at 500-650 °C, Materials Chemistry and Physics, 155. 113-121. Go to original source...
  15. M. BRAM, A. AHMAD-KHANLOU, A. HECKMANN, B. FUCHS, H.P. BUCHKREMER, D. STÖVER. (2002). Powder metallurgical fabrication processes for NiTi shape memory alloy parts, Materials Science and Engineering: A, 337. 254-263. Go to original source...
  16. M.H. ELAHINIA, M. HASHEMI, M. TABESH, S.B. BHADURI. (2012). Manufacturing and processing of NiTi implants: A review, Progress in Materials Science, 57. 911-946. Go to original source...