Manufacturing Technology 2015, 15(5):951-957 | DOI: 10.21062/ujep/x.2015/a/1213-2489/MT/15/5/951

Machining with Plastic Cutting Wedge

Karol Vasilko
Faculty of Manufacturing Technologies, Technical University of Košice, Bayerova 1, 080 01 Prešov, Slovakia

The paper analyses the possibilities of modification of cutting tool geometry in order to preserve a protective plastic zone of material at a cutting tool. Based on the results of model experiment as well as practical verification, a rapid increase in tool life has been achieved. The tool life is dependent on the size of the shortened rake face. Optimization of the tool face size enables to achieve multiplied tool life when comparing with a classical cutting tool. A uniqueness of this processes is the formation of the two chips, one of which is a created plastic layer along the edge of the cutting tool. The application of the tool is possible only with the plastic material cutting. Experimental tests were realized with usually used steels.

Keywords: machining, cutting tool, plastic deformation, tool wear

Published: November 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vasilko K. Machining with Plastic Cutting Wedge. Manufacturing Technology. 2015;15(5):951-957. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/5/951.
Download citation

References

  1. BACH, P. et al. (2014). Dynamic Forces in Unstable Cutting during Turning Operation. Manufacturing Technology, Vol. 14, No. 1, pp. 3-8, ISSN 1213-2489 Go to original source...
  2. BUDA,J., BÉKÉS, J. (1967). Teoretické základy obrábania kovov. Bratislava: ALFA, 392s.
  3. BUDA, J., VASILKO, K. Metóda zastavenia procesu obrábania bez špeciálnych prípravkov. Patent SR 122243
  4. CZAN, A., SAJGALIK, M., HOLUBJAK, J., KOUŘIL, K. (2013). Studying of cutting zone when finishing titanium alloy by application of multifunction measuring system. Manufacturing Technology, Vol. 13, No. 4, pp. 428-431 Go to original source...
  5. DMOCHOVSKI, J. (1978). Podstavy obróbki skawaniem. Warszawa, 586 s.
  6. DUGIN, A., POPOV, A. (2013). Increasing the accuracy of the effect of processing materials and cutting tool wear on the ploughing force values. Manufacturing Technology, Vol 13, No. 2, pp. 169-173, ISSN 1213-2489 Go to original source...
  7. HOLEŠOVSKÝ, F., NAPRSTKOVÁ, N., NOVÁK, M. (2012). GICS for grinding process optimalization. Manufacturing Technology, Vol. 11, No. 11, pp. 22-26, ISSN 1213-2489 Go to original source...
  8. HOSHI, K., HOSHI, T. (1969). On the metal cutting mechanism with the built-up edge. Mem. Fac. Engng. Hokaido University 12, č. 3, 1969
  9. KALPAKJIAN, S. (1989). Manufacturing Engineering and Technology. New York: Addison-Wesley Publishing Company, 1199, ISBN 0-201-12849-7
  10. MÁDL, J.: KVASNIČKA, I. (1998). Optimalizace obráběcího procesu.Praha: ČVUT, 168 s.
  11. NOVÁK, M. et al. (2011). Surface quality of hardened steels after grinding. Manufacturing Technology, Vol 11, No. 11, pp. 55-59 Go to original source...
  12. PŘIKRYL, Z., MUSÍLKOVÁ, R. (1971). Teorie obrábění. Praha: SNTL, 198 s.
  13. TRENDT, E, M. (1991). Metal Cutting. London - Boston, : Ed. Oxford, Butterworths - Helnemann, 236 s., ISBN 0-7506-1068-9
  14. VASILKO, K., MÁDL, J. (2013). Teorie obrábění. Univerzita J.E.Purkyně, Ústí n. Labem, 526 s., ISBN 978-80-7414-460-8
  15. WEBER, H., LOLADZE, T, N. (1986). Grundlagen des Spanens. Berlin: VEB Verlag Technik, 255 s.
  16. WORTHINGTON, B. (1974). Surface integrity, cutting forces and chip formation when machining with double rake angle tools. International Journal Mechanical Tool Design and Research, 14, No. 3, pp. 279-295 Go to original source...