Manufacturing Technology 2015, 15(6):964-969 | DOI: 10.21062/ujep/x.2015/a/1213-2489/MT/15/6/964
Powder Metallurgical Techniques for Fabrication of Biomaterials
- 1 Department of Metals and Corrosion Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
- 2 Institute of Physics, Academy of Sciences of the Czech Republic (AS CR), Na Slovance 1999/2, 182 21, Prague 8, Czech Republic
Different powder metallurgical techniques have been intensively studied as candidates of methods suitable for fabrication of metallic biomaterials intended for orthopedic applications. The main advantage of powder metallurgical products is that they contain porosity which compromises their mechanical properties closer to those of human bone and allows transport of bodily fluid and growth of ne tissue through the implant. This enhances the healing process; moreover, the pores may be also impregnated by drugs or growth factors, which are eluted during healing and support the healing process. Recently, Ti-based and Mg-based materials have been the most investigated metallic biomaterials; therefore, the powder metallurgical methods are usually studied on those materials. In this paper, the most investigated methods will be summarized and briefly described.
Keywords: Powder metallurgy, biomaterials, porosity
Published: December 1, 2015 Show citation
References
- NIINOMI, M. (2010). Metals for biomedical devices, Woodhead publishing Ltd.
- FROSCH, K. H., STÜRMER, K. M. (2006). Metallic biomaterials in skeletal repair, In: European Journal of Trauma, Vol. 32, No. 2, pp. 149-159.
Go to original source...
- AL JABBARI, Y. S. (2014). Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature, In: Journal of Advanced Prosthodontics, Vol. 6, No. 2, pp. 138-145.
Go to original source...
- NASAB, M. B., HASSAN, M. R.,SAHARI, B. B. (2010). Metallic biomaterials of knee and hip - A review, In: Trends in Biomaterials and Artificial Organs, Vol. 24, No. 2, pp. 69-82.
- CHEN, Q.,THOUAS, G. A. (2015). Metallic implant biomaterials, In: Materials Science and Engineering: R, Vol. 87, No. 0, pp. 1-57.
Go to original source...
- HANAWA, T. (2009). Materials for metallic stents, In: J Artif Organs, Vol. 12, No. 2, pp. 73-79
Go to original source...
- NAVARRO, M., MICHIARDI, A., CASTANO, O.,PLANELL, J. A. (2008). Biomaterials in orthopaedics, In: Journal of the Royal Society Interface, Vol. 5, No. 27, pp. 1137-1158.
Go to original source...
- NIINOMI, M. (2008). Metallic biomaterials, In: Journal of Artificial Organs, Vol. 11, No. 3, pp. 105-110.
Go to original source...
- SANCHEZ, A. H. M., LUTHRINGER, B. J. C., FEYERABEND, F.,WILLUMEIT, R. (2015). Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review, In: Acta Biomaterialia, Vol. 13, No. 0, pp. 16-31.
Go to original source...
- ZHENG, Y. F., GU, X. N., WITTE, F. (2014). Biodegradable metals, In: Materials Science and Engineering: R, Vol. 77, No. 0, pp. 1-34.
- CAPEK, J., VOJTECH, D. (2014). Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy, In: Materials Science and Engineering: C, Vol. 35, No. pp. 21-28.
Go to original source...
- ÈAPEK, J., VOJTÌCH, D. (2014). Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy, In: Materials Science and Engineering: C, Vol. 43, No. 0, pp. 494-501.
Go to original source...
- CHEN, Y., XU, Z., SMITH, C.,SANKAR, J. (2014). Recent advances on the development of magnesium alloys for biodegradable implants, In: Acta Biomaterialia, Vol. 10, No. 11, pp. 4561-4573.
Go to original source...
- VOJTECH, D., KUBASEK, J., SERAK, J., NOVAK, P. (2011). Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, In: Acta Biomaterialia, Vol. 7, No. 9, pp. 3515-3522.
Go to original source...
- MA, E.,XU, J. (2009). Biodegradable alloys: The glass window of opportunities, In: Nature Materials, Vol. 8, No. 11, pp. 855-857.
Go to original source...
- HERMAWAN, H.,MANTOVANI, D. (2013). Process of prototyping coronary stents from biodegradable Fe-Mn alloys, In: Acta Biomaterialia, Vol. 9, No. 10, pp. 8585-8592.
Go to original source...
- HERMAWAN, H., PURNAMA, A., DUBE, D., COUET, J.,MANTOVANI, D. (2010). Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies, In: Acta Biomaterialia, Vol. 6, No. 5, pp. 1852-1860.
Go to original source...
- KARAGEORGIOU, V., KAPLAN, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis, In: Biomaterials, Vol. 26, No. 27, pp. 5474-5491.
Go to original source...
- ALVAREZ, K.,NAKAJIMA, H. (2009). Metallic Scaffolds for Bone Regeneration, In: Materials, Vol. 2, No. 3, pp. 790-832.
Go to original source...
- OTSUKI, B., TAKEMOTO, M., FUJIBAYASHI, S., NEO, M., KOKUBO, T., NAKAMURA, T. (2006). Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants, In: Biomaterials, Vol. 27, No. 35, pp. 5892-5900.
Go to original source...
- BOBYN, J. D., STACKPOOL, G. J., HACKING, S. A., TANZER, M.,KRYGIER, J. J. (1999). Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial, In: Journal of Bone and Joint Surgery-British Volume, Vol. 81B, No. 5, pp. 907-914.
- ÈAPEK, J., VOJTÌCH, D., OBORNÁ, A. (2015). Microstructural and mechanical properties of biodegradable iron foam prepared by powder metallurgy, In: Materials & Design, Vol. 83, No. pp. 468-482.
Go to original source...
- WU, S., LIU, X., YEUNG, K. W. K., LIU, C.,YANG, X. (2014). Biomimetic porous scaffolds for bone tissue engineering, In: Materials Science and Engineering: R: Vol. 80, No. pp. 1-36.
Go to original source...
- ZHANG, X., LI, X. W., LI, J. G.,SUN, X. D. (2014). Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering, In: Materials Science and Engineering: C, Vol. 42, No. pp. 362-367.
Go to original source...
- MATASSI, F., BOTTI, A., SIRLEO, L., CARULLI, C.,INNOCENTI, M. (2013). Porous metal for orthopedics implants, In: Clinical cases in mineral and bone metabolism: the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases, Vol. 10, No. 2, pp. 111-115.
- LYNDON, J. A., BOYD, B. J.,BIRBILIS, N. (2014). Metallic implant drug/device combinations for controlled drug release in orthopaedic applications, In: Journal of Controlled Release, Vol. 179, No. 0, pp. 63-75.
Go to original source...
- NOVOSEL, E. C., KLEINHANS, C.,KLUGER, P. J. (2011). Vascularization is the key challenge in tissue engineering, In: Advanced Drug Delivery Reviews, Vol. 63, No. 4-5, pp. 300-311.
Go to original source...
- LANGER, R.,CHASIN, M. (1990). Biodegradable polymers as drug delivery systems, Marcel Dekker, New York.
- WEN, C. E., MABUCHI, M., YAMADA, Y., SHIMOJIMA, K., CHINO, Y.,ASAHINA, T. (2001). Processing of biocompatible porous Ti and Mg, In: Scripta Materialia, Vol. 45, No. 10, pp. 1147-1153.
Go to original source...
- ZHUANG, H., HAN, Y.,FENG, A. (2008). Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds, In: Materials Science and Engineering: C, Vol. 28, No. 8, pp. 1462-1466.
Go to original source...
- ARIFVIANTO, B.,ZHOU, J. (2014). Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review, In: Materials, Vol. 7, No. 5, pp. 3588-3622.
Go to original source...
- THÜMMLER, F.,OBERACKER, R. Introduction to Powder Metallurgy, Maney Publishing for IOM3, the Institute of Materials, Minerals and Mining.
- ZHANG, Y. P., YUAN, B., ZENG, M. Q., CHUNG, C. Y.,ZHANG, X. P. (2007). High porosity and large pore size shape memory alloys fabricated by using pore-forming agent (NH4HCO3) and capsule-free hot isostatic pressing, In: Journal of Materials Processing Technology, Vol. 192-193, No. pp. 439-442.
Go to original source...
- SPOERKE, E. D., MURRAY, N. G. D., LI, H., BRINSON, L. C., DUNAND, D. C.,STUPP, S. I. (2008). Titanium with aligned, elongated pores for orthopedic tissue engineering applications, In: Journal of Biomedical Materials Research Part A, Vol. 84A, No. 2, pp. 402-412.
Go to original source...
- BOCANEGRA-BERNAL, M. H. (2004). Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics, In: Journal of Materials Science, Vol. 39, No. 21, pp. 6399-6420.
Go to original source...
- KUMAR, A., BISWAS, K., BASU, B. (2015). Hydroxyapatite-titanium bulk composites for bone tissue engineering applications, In: Journal of Biomedical Materials Research Part A, Vol. 103, No. 2, pp. 791-806.
- DUDEK, A.,KLIMAS, M. (2015). Composites based on titanium alloy Ti-6Al-4V with an addition of inert ceramics and bioactive ceramics for medical applications fabricated by spark plasma sintering (SPS method), In: Materialwissenschaft Und Werkstofftechnik, Vol. 46, No. 3, pp. 237-247.
Go to original source...
- DAOUSH, W. M. R. M., PARK, H. S., INAM, F., LIM, B. K.,HONG, S. H. (2015). Microstructural and Mechanical Characterization of Ti-12Mo-6Zr Biomaterials Fabricated by Spark Plasma Sintering, In: Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, Vol. 46A, No. 3, pp. 1385-1393.
Go to original source...
- FOUSOVA, M., CAPEK, J., VOJTECH, D. (2014). Preparation of magnesium-zinc alloy by mechanical alloying, In: Manufacturing Technology, Vol. 14, No. 3, pp. 304-309
Go to original source...
- NOVÁK, P., POKORNÝ, P., VOJTÌCH, V., KNAISLOVÁ, A., ©KOLÁKOVÁ, A., ÈAPEK, J., KARLÍK, M., KOPEÈEK, J. (2015). Formation of Ni-Ti intermetallics during reactive sintering at 500-650 °C, In: Materials Chemistry and Physics, Vol. 155, No. 0, pp. 113-121.
Go to original source...
- WHITNEY, M., CORBIN, S. F.,GORBET, R. B. (2008). Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis, In: Acta Materialia, Vol. 56, No. 3, pp. 559-570.
Go to original source...
- NOVAK, P., MEJZLIKOVA, L., MICHALCOVA, A., CAPEK, J., BERAN, P., VOJTECH, D. (2013). Effect of SHS conditions on microstructure of NiTi shape memory alloy, In: Intermetallics, Vol. 42, No. pp. 85-91.
- BASSANI, P., GIULIANI, P., TUISSI, A.,ZANOTTI, C. (2009). Thermomechanical Properties of Porous NiTi Alloy Produced by SHS, In: Journal of Materials Engineering and Performance, Vol. 18, No. 5-6, pp. 594-599.
Go to original source...
- BISWAS, A. (2005). Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure, In: Acta Materialia, Vol. 53, No. 5, pp. 1415-1425.
Go to original source...
- KUÈERA, V., ÈAPEK, J., MICHALCOVÁ, A., VOJTÌCH, D. (2014). Preparation and characterization of niti shape memory alloy preparedby powder metallurgy, In: Manufacturing Technology, Vol. 14, No. 3, pp. 342-347.
Go to original source...
- WHITNEY, M., CORBIN, S. F.,GORBET, R. B. (2009). Investigation of the influence of Ni powder size on microstructural evolution and the thermal explosion combustion synthesis of NiTi, In: Intermetallics, Vol. 17, No. 11, pp. 894-906.
Go to original source...
- QUADBECK, P., HAUSER, R., KÜMMEL, K., STANDKE, G., STEPHANI, G., NIES, B., RÖßLER, S., WEGENER, B. (2010). Iron based cellular metals for degradable synthetic bone replacement, In: PM2010 World Congress, Florenz, Italy, 6 p.
- LI, J. P., VAN BLITTERSWIJK, C. A.,DE GROOT, K. (2004). Factors having influence on the rheological properties of Ti6A14V slurry, In: Journal of Materials Science: Materials in Medicine, Vol. 15, No. 9, pp. 951-958.
Go to original source...
- BANHART, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams, In: Progress in Materials Science, Vol. 46, No. 6, pp. 559-632.
Go to original source...
- QUADBECK, P., KÜMMEL, K., HAUSER, R., STANDKE, G., ADLER, J., STEPHANI, G.,KIEBACK, B. (2011). Structural and Material Design of Open-Cell Powder Metallurgical Foams, In: Advanced Engineering Materials, Vol. 13, No. 11, pp. 1024-1030.
Go to original source...
- FONT, R., FULLANA, A., CABALLERO, J. A., CANDELA, J.,GARCÍA, A. (2001). Pyrolysis study of polyurethane, In: Journal of Analytical and Applied Pyrolysis, Vol. 58-59, No. 0, pp. 63-77.
Go to original source...
- JEE, C. S. Y., GUO, Z. X., EVANS, J. R. G.,ÖZGÜVEN, N. (2000). Preparation of high porosity metal foams, In: Metallurgical and Materials Transactions B, Vol. 31, No. 6, pp. 1345-1352.
Go to original source...
- LEWIS, G. (2013). Properties of open-cell porous metals and alloys for orthopaedic applications, In: Journal of Materials Science: Materials in Medicine, Vol. 24, No. 10, pp. 2293-2325.
Go to original source...
- TORRES, Y., RODRÍGUEZ, J. A., ARIAS, S., ECHEVERRY, M., ROBLEDO, S., AMIGO, V.,PAVÓN, J. J. (2012). Processing, characterization and biological testing of porous titanium obtained by space-holder technique, In: Journal of Materials Science, Vol. 47, No. 18, pp. 6565-6576.
Go to original source...
- MANSOURIGHASRI, A., MUHAMAD, N.,SULONG, A. B. (2012). Processing titanium foams using tapioca starch as a space holder, In: Journal of Materials Processing Technology, Vol. 212, No. 1, pp. 83-89.
Go to original source...
- WANG, X., LI, Y., XIONG, J., HODGSON, P. D.,WEN, C. e. (2009). Porous TiNbZr alloy scaffolds for biomedical applications, In: Acta Biomaterialia, Vol. 5, No. 9, pp. 3616-3624.
Go to original source...
- AYDOĞMUª, T.,BOR, ª. (2009). Processing of porous TiNi alloys using magnesium as space holder, In: Journal of Alloys and Compounds, Vol. 478, No. 1-2, pp. 705-710.
Go to original source...
- NIU, W., BAI, C., QIU, G.,WANG, Q. (2009). Processing and properties of porous titanium using space holder technique, In: Materials Science and Engineering: A, Vol. 506, No. 1-2, pp. 148-151.
Go to original source...
- KWOK, P. J., OPPENHEIMER, S. M.,DUNAND, D. C. (2008). Porous Titanium by Electro-chemical Dissolution of Steel Space-holders, In: Advanced Engineering Materials, Vol. 10, No. 9, pp. 820-825.
Go to original source...