Manufacturing Technology 2016, 16(2):436-444 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/2/436

Development and Production of Prototype Model of Axial Fan

Josef Sedlak1, Jiri Malasek2, Martin Ondra2, Ales Polzer1
1 Department of Machining Technology, Institute of Manufacturing Technology, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno 616 69, Czech Republic
2 Department of Handling and Building Machines, Institute of Automotive Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno 616 69, Czech Republic

Additive technologies belong to modern trends in production of prototype components. They include e.g. sintering of powders with a various chemical composition, granularity, physical, chemical and other usable qualities. There belong to additive technologies especially a technology of Rapid Prototyping that use various principles to make components. According to the used technology photopolymers, thermoplastics, a specially modified paper or metal powders are used in a Rapid Prototyping machinery.
An article deals with a characteristic, concept, calculation and production of a prototype model of an axial fan that enables quick build-up time of fan turbine speed. Production of the axial fan is realized by an additive technology of Rapid Prototyping using a method of Fused Deposition Modelling - a 3D printer Fortus 360mc. The article describes individual development stages from the concept to production itself including a final visualization of the prototype model of an 11-blade axial fan.

Keywords: Axial Fan, Additive Technology, Rapid Prototyping, Fused Deposition Modeling, 3D Printer

Published: April 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sedlak J, Malasek J, Ondra M, Polzer A. Development and Production of Prototype Model of Axial Fan. Manufacturing Technology. 2016;16(2):436-444. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/2/436.
Download citation

References

  1. ©2015 VYTOZ-EKO spol. s.r.o. Ventilacni turbiny ZLT. All rights reserved. [Online]. [Seen 27th May 2015]. Available at: http://www.vytozeko.cz/ventilacni-turbiny-zlt/.
  2. ©2015 H-tech group s.r.o. Ventilacni turbiny a vetraci ventilatory. All rights reserved. [Online]. [Seen 27th May 2015]. Available at: http://www.vetrani.com/index.php/cs/vv-ventilacni-turbiny.
  3. ©2015 Haze s r.o. Lomanco ventilacni turbina. [Online]. [Seen 27th May 2015]. Available at: http://www.haze.cz/stresni-vetraci-systemy/lomanco-ventilacni-turbina/.
  4. ©2015 MOBILAND TRADE s.r.o., Edmonds. Neco o ventilaci. [Online]. [Seen 27th May 2015]. Available at: http://www.ventilacniturbiny.cz/neco-o-ventilaci.
  5. ONDRA, M. (2015). Vyvoj a regulace ventilacnich turbin. Brno. Master Thesis. Brno University of Technology, Faculty of Mechanical Engineering, Institute of Automotive Engineering. 84 p., 15 appendices. Advisor doc. Ing. Jiri Malasek, Ph.D.
  6. Edmonds. In: Hurricane Brochure. [Online]. [Seen 18th April 2015]. Available at: http://www.edmonds.com.au/Edmonds/UploadedFiles/40/400d36aa-8717-47d7-adc8-b5cf04f32686.pdf.
  7. Edmonds. In: Technicke specifikace windmaster, superwhirly. [Online]. [Seen 18th May 2015]. Available at: http://www.ventilacniturbiny.cz/technicke-dokumenty/superwhirly/superwhirly-tech-specifikace.pdf.
  8. Edmonds. In: Technicke specifikace supavent, turbobeam. [Online]. [Seen 18th May 2015]. Available at: http://www.ventilacniturbiny.cz/technicke-dokumenty/turbobeam/turbobeam-tech-specifikace.pdf.
  9. Edmonds. In: Technicke specifikace turbo ventura, sewer vent. [Online]. [Seen 18th May 2015]. Available at: http://www.ventilacniturbiny.cz/technicke-dokumenty/sewervent/sewervent-tech-specifikace.pdf.
  10. Insight 10.2®. ©2015 Stratasys Ltd. All rights reserved. [Online]. [Seen. 21st September 2015]. Available at: http://www.dimensionprinting.com/applications/rapid-prototyping.aspx.
  11. CHUA, C. K., LEONG, K. F., LIM, C. S. (2010). Rapid Prototyping: Principles and Applications. 3rd Ed. New Jersey: World Scientific, 512 p. ISBN 978-981-277-897-0. Go to original source...
  12. GEBHARDT, A. (2003). Rapid Prototyping. CARL HANSER VERLAG, 377 p. ISBN 3-446-21259-0. Go to original source...
  13. SEDLAK, J., PTACKOVA, M., NEJEDLY, J., MADAJ, M., DVORACEK, J., ZOUHAR, J., CHARVAT, O., PISKA, M. (2013). Material Analysis of Titanium Alloy Produced by Direct Metal Laser Sintering. International Journal of Metalcasting, Vol. 7, No. 2, p. 43-50. ISSN 1939-5981. Go to original source...
  14. MARCINCIN, J. N., JANAK, M., MARCINCINOVA, L. N. (2012). Increasing of Product Quality Produced by Rapid Prototyping Technology. Manufacturing Technology, June, Vol. 12, No. 12, p. 71-75. ISSN 1213-2489. Go to original source...
  15. SEDLAK, J., RICAN, D., PISKA, M. (2015). Study of Materials Produced by Powder Metallurgy Using Classical and Modern Additive Laser Technology. Procedia Engineering, Vol. 2015, No. 1, p. 1232-1241. ISSN 1877-7058. Go to original source...
  16. SEDLAK, J., SEKERKA, V., SLANY, M., KOURIL, K., ZEMCIK, O., CHLADIL, J., ROZKOSNY, L. (2015). Production of Prototype Parts Using Direct Metal Laser Sintering Technology. Acta Polytechnica, 2015, Vol. 55, No. 4, p. 260-266. ISSN 1210-2709. Go to original source...
  17. SEDLAK, J., SLANY, M., FIALA, Z., JAROS, A. (2015). Production Method of Implant Prototype of Knee-Joint Femoral Component. Manufacturing Technology, 2015, Vol. 15, No. 2, p. 195-204. ISSN 1213-2489. Go to original source...
  18. SHIGLEY, J. E., MISCHKE, Ch. R., BUDYNAS, R. G. (2010). Konstruovani strojnich soucasti. Brno: VUTIUM, 1186 p. ISBN 978-80-214-2629-0.
  19. LEINVEBER, J., VAVRA, P. (2011). Strojnicke tabulky. 5th Ed. Uvaly: ALBRA, 927 p. ISBN 978-80-7361-081-4.