Manufacturing Technology 2016, 16(3):489-496 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/3/489

Parametric CAD Model of a Double-Lay Six Strand Wire Rope

Michal Fabian1, Eva Stanová2, Gabriel Fedorko3, Stanislav Kme»2, Jana Fabianová3, Jozef Krajňák1
1 Faculty of Mechanical Engineering, Technical University of Koąice, Letná 9, Koąice, 040 01, Slovakia
2 Faculty of Civil Engineering, Technical University of Kosice, Vysokoąkolská 4, 042 00 Koąice, Slovakia
3 Technical University of Koąice, Park Komenského 14, Koąice, 040 01, Slovakia

Parametric modelling based on mathematical relationships allows creation of different variants of proposed solutions in real time. In particular, parametric modelling enables rapid design of 3D virtual models intended for further analysis and simulations. This paper presents an approach to design of a six strand wire rope model in a CAD environment. The presented model is characterized by double helical winding wires. Wires axes curves are mathematically expressed in the form of parametric equations. The parametric equations used in model generation are presented and the whole methodology of rope model creation in CATIA V5 software is briefly described.

Keywords: Parametric modelling, wire rope, CAD

Published: June 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Fabian M, Stanová E, Fedorko G, Kme» S, Fabianová J, Krajňák J. Parametric CAD Model of a Double-Lay Six Strand Wire Rope. Manufacturing Technology. 2016;16(3):489-496. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/3/489.
Download citation

References

  1. STANOVA, E., FEDORKO, G., FABIAN, M., KMET, S. (2011). Computer modelling of wire strands and ropes Part I: Theory and computer implementation In:Advances in Engineering Software, Vol. 42, No. 6, pp. 305-315. ISSN 09659978. Go to original source...
  2. SONG, J., CAO, G., CAO, Y., WU, R. (2012). Modeling method and analysis of geometric characteristic for the triangular strand rope. In: Modern Manufacturing Engineering. Vol. 11, pp. 1-7.
  3. GHOREISHI, S., CARTRAUD, P., DAVIES, P., MESSAGER, T. (2007). Analytical modeling of synthetic fiber ropes subjected to axial loads. Part I: A new continuum model for multilayered fibrous structures. In: International Journal of Solids and Structurest. Vol. 44, No. 9, pp. 2924-2942. Go to original source...
  4. GHOREISHI, S., CARTRAUD, P., DAVIES, P., MESSAGER, T. (2007). Analytical modeling of synthetic fiber ropes. Part II: A linear elastic model for 1 + 6 fibrous structures. In: International Journal of Solids and Structurest. Vol. 44, No. 9, pp. 2943-2960. ISSN 00207683. Go to original source...
  5. USABIAGA, H., PAGALDAY, J. M. (2008). Analytical procedure for modelling recursively and wire by wire stranded ropes subjected to traction and torsion loads. In: International Journal of Solids and Structures. Vol. 45, No. 21, pp. 5503-5520. ISSN 00207683. Go to original source...
  6. WANG, X., MENG, X., WANG, J., SUN, Y., GAO, K. (2015). Mathematical modeling and geometric analysis for wire rope strands. In: Applied Mathematical Modelling. Vol. 39, No. 3-4, pp. 1019-1032. ISSN 0307904X. Go to original source...
  7. XIANG, L., WANG, H.Y., CHEN, Y., GUAN, Y.J., WANG, Y.L., DAI, L L. (2015). Modeling of multi-strand wire ropes subjected to axial tension and torsion loads. In: International Journal of Solids and Structures. Vol. 58, pp. 233-246. ISSN 00207683. Go to original source...
  8. BÍLEK, O., ROKYTA, L., ©IMONÍK, J. (2012). CAM in the Production of Casting Patterns. In: Manufacturing Technology. Vol. 12, No. 12. pp. 7 - 12. ISSN 12132489 Go to original source...
  9. ARDELEAN, F. A. (2007). 3D Modelling of the harmonic drive using CATIA. In: Management. Vol. IV, No. Xvi, pp. 882-885.
  10. DU, B., WANG, X., FENG, Y., YU, D., XU, G. (2014). Intelligent assembly technology based on standard parts feature of CATIA. In: Modern Applied Science. Vol. 8, No. 2, pp. 49-55. ISSN 19131844. Go to original source...
  11. SARIC, I., REPCIC, N., MUMINOVIC, A. (2009). 3D Geometric parameter modelling of belt transmissions and transmissions gear. In: TECH TECHNOL EDUC MANAG-TTEM - Technics Technologies Education Management-ttem. Vol. 4, No. 2, pp. 181-188. ISSN 1840-1503.
  12. SKARKA,W. (2007). Application of MOKA methodology in generative model creation using CATIA. In: Engineering Applications of Artificial Intelligence. Vol. 20, No. 5, pp. 677-690. ISSN 09521976. Go to original source...
  13. WANG, D., ZHANG, D., WANG, S., GE, S. (2013). Finite element analysis of hoisting rope and fretting wear evolution and fatigue life estimation of steel wires. In: Engineering Failure Analysis. Vol. 27, pp. 173-193. ISSN 13506307. Go to original source...
  14. ERDÖNMEZ, C., IMRAK, E. (2011). A finite element model for independent wire rope core. In: Sadhana. Vol. 36, No. 6, pp. 995-1008. Go to original source...
  15. A. NAWROCKI, A., LABROSSE, M. (2000). A finite element model for simple straight wire rope strands. In: Computers & Structures. Vol. 77, No. 4, pp. 345-359. ISSN 00457949. Go to original source...
  16. JIANG, W.G., HENSHALL, J.L., WALTON, J.M. (2000). A concise finite element model for three-layered straight wire rope strand. In: International Journal of Mechanical Sciences. Vol. 42, No. 1, pp. 63-86. ISSN 00207403. Go to original source...
  17. KASTRATOVIĆ, G. M., VIDANOVIĆ, N. D. (2011). Some aspects of 3D finite element modeling of independent wire rope core. In: FME Transactions. Vol. 39, No. 1, pp. 37-40. ISSN 14512092.
  18. KASTRATOVIĆ, G., VIDANOVIĆ, N., BAKIĆ, V., RA©UO, B. (2009). On finite element analysis of sling wire rope subjected to axial loading. In: Ocean Engineering. Vol. 88, pp. 480-487. ISSN 00298018. Go to original source...
  19. FONTANARI, V., MONELLI, B. D., DEGASPERI, F. (2009). Experimental and numerical analysis of full-locked coil ropes fire behaviour. In: Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics. Vol. 2. pp. 1383-1392. ISBN 9781615671892.
  20. WANG, D. ZHANG, D., ZHANG, Z., GE, S. (2012). Effect of various kinematic parameters of mine hoist on fretting parameters of hoisting rope and a new fretting fatigue test apparatus of steel wires. In: Engineering Failure Analysis. Vol. 22, pp. 92-112. ISSN 13506307. Go to original source...
  21. ČUBOŇOVÁ, N., (2013). Postprocessing of CL Data in CAD/CAM system Edgecam using the Constructor of postprocessors. In: Manufacturing Technology. Vol. 13, No. 2, pp. 158 - 164. ISSN 12132489.. Go to original source...
  22. NOVÁK, P., ME©KO, J., ®MINDÁK, M. (2013). Finite Element Implementation of Multi-Pass Fillet Weld with Phase Changes. In: Manufacturing Technology. Vol. 13, No. 1. pp. 79 - 85. ISSN 12132489. Go to original source...
  23. Steel Wire Ropes/Wires, In: AVIMAR [Online]. Available:< http://avimarltd.tripod.com/swropes.html >, [Accessed: 28-December-2015]
  24. MOLNAR, V., BOROSKA, J., DECMANOVA, J. (2010). Mechanical properties of steel rope wires - quality test assurance. In: Acta Montanistica Slovaca.Vol. 15, No. 1 Spec. Issue. pp. 23 - 30. ISSN 1335-1788
  25. DANESHJO, N., KORBA, P., VARGOVÁ, R., TAHZIB, B. (2013). Application of 3D modeling and simulation using modular components. In: Applied Mechanics and Materials. Vol. 389, pp. 957-962, ISSN 1660-9336 Go to original source...
  26. STEJSKAL, T., SVETLÍK, J. (2012). Failure rate for repaired and not repaired object. In: International journal of engineering. Vol. 10, no. 3. ISSN 1584-2673