Manufacturing Technology 2016, 16(4):657-662 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/4/657

Mechanical Properties of Titanium-Aluminium Base Nanomultilayer Coatings

Totka Bakalova1, Nikolay Petkov2, Tetiana Cholakova2, František Kaván1, Hristo Bahchedzhiev2
1 Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
2 Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61, St. Peterburg Blvd. 4000 Plovdiv, Bulgaria

Titanium-aluminium base nanomultilayer (NML) coatings are deposited by cathodic arc evaporation using pure titanium and aluminium with eighteen percent silicon cathodes. Each multilayer Ti-Al-Si-N structure consists of 49 bi-layers with different thickness. The external deposited layer is with five times longer growing period. The coatings are deposited at the pressure of 2 Pa and the substrate temperature of 400 °C. Polished steel discs (Ø 20 mm × 5 mm thick) are used as the substrate material.
This article presents an investigation of the surface morphology and mechanical properties of the coatings, particularly the adhesion and nanohardness. The AFM analysis indicates that the coatings are dense, with an average surface roughness in the range of 33 / 58 nm. The coating with the smaller value of average surface roughness exhibited a maximum hardness of 43 GPa. High calculated value of plasticity index (H/E) is 0.104. The scratch test results revealed that all the investigated coatings have very good adhesion in the normal loading interval from 1 N to 40 N.

Keywords: cathodic arc evaporation, Ti-Al-Si-N, surface morphology, multilayer, hardness, adhesion

Published: August 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bakalova T, Petkov N, Cholakova T, Kaván F, Bahchedzhiev H. Mechanical Properties of Titanium-Aluminium Base Nanomultilayer Coatings. Manufacturing Technology. 2016;16(4):657-662. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/4/657.
Download citation

References

  1. BARSHILIA, H. C., DEEPTHI, B., RAJAN, K. S. (2006). Vacuum, Vol. 81, pp. 479 - 488. Go to original source...
  2. BUDZYNSKI, P., SIELANKO, J., SUROWIEC, Z. (2008). Intermetallics, Vol. 16, pp. 987 - 994. Go to original source...
  3. SURESHA, S. J., BHIDE, R., JAYARAM, V., BISWAS, S. K. (2006). Materials Science and Engineering A, Vol. 429, pp. 252 - 260. Go to original source...
  4. TENTARDINI, E. K., KWIETNIEWSKI, C., PERINI, F., BLANDO, E., HÜBLER, R., BAUMVOL, I. J. R. (2009). Surface & Coatings Technology, Vol. 203, pp. 1176 - 1181. Go to original source...
  5. JIANG, N., SHEN, Y. G., ZHANG, H. J., BAO, S. N., HOU, X. Y. (2006). Materials Science and Engineering B, Vol. 135, pp. 1 - 9. Go to original source...
  6. CHEN, L., DU, Y., WANG, She. Q., WANG, Ai. J., XU, H. (2009). Materials Science and Engineering A, Vol. 502, pp. 139 - 143. Go to original source...
  7. SINGH, K., LIMAYE, P. K., SONI, N. L., GROVER, A. K., AGRAWAL, R. G., SURI, A. K. (2005). Waer, Vol. 258, pp. 1813 - 1824.
  8. MARQUES, L., CARVALHO, S., VAZ, F., RAMOS, M. M. D., REBOUTA, L. (2009). Vacuum, Vol. 83, pp. 1240 - 1243. Go to original source...
  9. LI, Y., SHIMADA, S., KIYONO, H., HIROSE, A. (2006). Acta Materialia, Vol. 54, pp. 2041 - 2048. Go to original source...
  10. MEI, F., SHAO, N., WEI, L., LI, G. (2005). Materials Letters, Vol. 59, pp. 2210 - 2213. Go to original source...
  11. CHEN, L., DU, Y., WANG, S. Q., J. Li. (2007). Int. Journal of Refractory Metals & Hard Materials, Vol. 25, pp. 400 - 404. Go to original source...
  12. CARVALHO, S., REBOUTA, L., RIBEIRO, E., VAZ, F., TAVARES, C. J., ALVES, E., BARRADAS, N. P., RIVIERE, J. P. (2009). Vacuum, Vol. 83, pp. 1206 - 1212. Go to original source...
  13. TUILIER, M.-H., PAC, M.-J., COVAREL, G., ROUSSELOT, C., KHOUCHAF, L. (2007). Surface & Coating Technology, Vol. 201, pp. 4536 - 4541. Go to original source...
  14. CHEN, L., DU, Y., WANG, Ai J., WANG, S. Q., ZHOU, S. Z. (2009). Int. Journal of Refractory Metals & Hard Materials, Vol. 27, pp. 718 - 721. Go to original source...
  15. OLIVEIRA, J. C., MANAIA, A., CAVALEIRO, A., VIEIRA, M. T. (2006). Surface & Coating Technology, Vol. 201, pp. 4073 - 4077.
  16. ZHAO, W., MEI, F., DONG, Y., LI, G. (2006). Journal of Materials Processing Tachnology, Vol. 176, pp. 179 - 182. Go to original source...
  17. OLIVEIRA, J. C., MANAIA, A., CAVALEIRO, A. (2008). Thin Solid Films, Vol. 516, pp. 5032 - 5028. Go to original source...
  18. OLIVEIRA, J. C., MANAIA, A., DIAS, J. P., CAVALEIRO, A., TEER, D., TAYLOR, S. (2006). Surface & Coating Technology, Vol. 200, pp. 6583 - 6587. Go to original source...
  19. FERNANDES, C., CARVALHO, S., REBOUTA, L., VAZ, F., DENANNOT, M. F., PACAUD, J., RIVIERE, J. P., CAVALEIRO, A., (2008). Vacuum, Vol. 82, pp. 1470 - 1474. Go to original source...
  20. APERADOR, W., CAICEDO, J., ESPANA, C., CABRERA, G., AMAYA, C. (2010). Journal of Physics and Chemistry of Solids, Vol. 71, pp. 1754 - 1759. Go to original source...
  21. PETKOV, N., BAHCHEDZHIEV, Hr., CHOLAKOVA, T. (2015). Eur. Phys. J. Appl. Phys., Vol. 70, 30801. Go to original source...
  22. NOVAK, M. (2012). Surface with High Precision of Roughness after Grinding. In: Manufacturing Technology, Vol. 12, No. 12, pp. 66-70, ISSN 1213-2489. Go to original source...
  23. SVOBODOVÁ, J., KRAUS, P. (2015). Influence of Chemical Pre-treatments Nanotechnology Based Applied to the Al Sheet on the Roughness and Morphology of the Surface. In: Manufacturing Technology, Vol. 15, No. 4, pp. 714 - 720, ISSN 1213-2489. Go to original source...
  24. CHEN, L., DU, Y., YIN, F., LI, J. (2007). Int. Journal of Refractory Metals & Hard Materials, Vol. 25, pp. 72 - 76. Go to original source...
  25. CHEN, L., DU, Y., MAYRHOFER, P. H., WANG, Sh. Q., LI, J. (2008). Surface & Coating Technology, Vol. 202, pp. 5158 - 5161. Go to original source...
  26. LEYLAND, A., MATTHEWS, A. (2000). Wear, Vol. 246, pp. 1 - 11. Go to original source...
  27. WANG, Sh., CHEN, L., YANG, B., CHANG, K., DU, Y., LI, J., GANG, T. (2010). Int. Journal of Refractory Metals and Hard Materials, Vol. 28, pp. 593 - 596. Go to original source...
  28. CARVALHO, P. (2008). Development of new decorative coatings based on zirconium oxynitrides, Ph.D. Thesis, University of Minho, Portugal, http://hdl.handle.net/1822/8949.