Manufacturing Technology 2016, 16(5):1038-1041 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/5/1038

Built-up Edge Formation in Machining AlSi7Mg0.3 Alloy

Michal Martinovsky, Jan Madl, Jan Vitner
Faculty of Production Technology and Management, J. E. Purkyne Univerzity in Usti nad Labem, Pasteurova 3334/7, 400 01, Usti nad Labem, Czech Republic

One of the main problems in machining Al alloys represents built-up edge formation. This paper is focused on the effect of selected modifiers in AlSi7Mg0.3 alloy on built-up edge formation. Four variants of castings modified by strontium, calcium and antimony are used. All these alloys are compared with non-modified alloy. Built-up formation leads to the increasing of surface roughness for both types of built-up edge - unstable or stable. If unstable built-up edge is produced, surface roughness increases enormously. Therefore the research is focused on surface roughness in different cutting conditions. There were moulded castings of non-modified alloy and for each modified variant. Gravity-die castings into a metal mould with a thermal insulation were made.

Keywords: AlSi7Mg0.3 alloy, Modifiers, Machining, Built-up edge

Published: October 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Martinovsky M, Madl J, Vitner J. Built-up Edge Formation in Machining AlSi7Mg0.3 Alloy. Manufacturing Technology. 2016;16(5):1038-1041. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/5/1038.
Download citation

References

  1. MADL, J., KOUTNY, V. (2000). Machinability Tests of Aluminium Alloys. In: MATAR, FS ÈVUT, Praha, pp. 124-127.
  2. PALMAI, Z. (2013). Model of Chip Formation During Turning in the Presence of a Built-up Edge. Manufacturing Technology, Vol. 12, No. 13, Univerzita J. E. Purkyne, Usti nad Labem, pp. 207-212. ISSN 1213-2489. Go to original source...
  3. VASILKO, K. (2006). Physical and Metallurgical Approach to Chip Creation. Manufacturing Technology, Vol. 6, No. 6, Univerzita J. E. Purkynì, Usti nad Labem, pp. 56-62. ISSN 1213-2489.
  4. MADL, J., KOUTNY, V. (1998). Surface Quality and Cutting Fluids. Nauka, inovacionnye proizvodstva, menedzment (Russia). No. 7-8, pp. 166-169.
  5. KOCMAN, K. (2004). Specialni technologie obrabeni. FSI VUT, Brno, pp.155, ISBN 80-214-2562-8
  6. BOOTHROPYD, G. (1975). Fundamentals of Machining and Machine Tools, MARCEL DEKKER, New York, pp. 545, ISBN 0-8247-7852-9.
  7. MARTINOVSKY, M., MADL, J. (2016). The Effect of Different Modifiers in AlSi7Mg0,3 Alloy on Built-up edge Formation in Machining. Manufacturing Technology, Vol. 16, No. 1, pp. 173-178. ISSN 1213-2489. Go to original source...
  8. KROLCZYK, G., NIESLONY, P. LEGUTKO, S. (2015). Determination of Tool Life and Research Wear During Duplex Stainless Steel Turning. Archives of Civil and Mechanical Engineering, Vol. 15, No. 2, pp. 347-354. Go to original source...
  9. KROLCZYK, G., GAJEK, M., LEGUTKO, S. (2013). Predicting the Tool Life in the Dry Machining of Duplex Stainless Steel. Expluatacia i Niezavodosc - Maintenance and Reliability, Vol. 15, No. 1. pp. 62-65.
  10. BOLIBRUCHOVA, D., TILLOVA, E. (2005). Zlievarenske zliatiny Al-Si, ZU, Zilina, pp. 180. ISBN 80-87-485-6.
  11. MARTINOVSKY, M., MADL, J. (2014). Vliv modifikatoru na obrobitelnost a vlastnosti Al-Si slitin. Strojírenská technologie, Vol. 14, No. 3, FVTM UJEP, Usti ad Labem, pp. 212-219. ISSN 1211-4162.
  12. MADL, J., RUZICKA, L., LATTNER, M. (2013). The Effect of Chemical Elements on the Machinability of Aluminium Alloys. Manufacturing Technology, Vol. 13, No. 3, pp. 349-353. ISSN 1213-2489. Go to original source...
  13. STEFAN MICHNA et al. (2007). Aluminium Materials and Technologies from A to Z. Adin, Presov, p. 632. ISBN 9789-80-89244-18-8.
  14. ALUMINIUM TASCHENBUCH (1988). Aluminium-Verlag, Dusseldorf, pp. 234.