Manufacturing Technology 2016, 16(5):1179-1182 | DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/5/1179

The Stress Detection and the Fatigue Lifetime of Stainless Steel during Three-Point Bending Cyclic Loading

Milan Uhríčik, Monika Oravcová, Peter Palček, Mária Chalupová
Department of Material Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia

The article will describe investigation of the deformation of stainless steel during three-point bending cyclic loading with using thermovision. The analysis will prove different temperature response to external loading and dependence of elastic or plastic deformation development on material's state. The input data which are necessary for this analysis we will can get from temperature field of specimen surface. Process of elastic and plastic deformation is in dependence on radiation emitted by the object. For obtain thermal fields we will use thermal camera FLIR SC7000 with the highest sensitivity. The contribution also presents results of fatigue resistance of austenitic stainless steel AISI 316L, which is used as a biomaterial, obtained at low frequency cyclic loading in the high cycle fatigue region by three-point bending test. The fracture surface of the testing sample was examined using scanning electron microscopy (SEM).

Keywords: Stress, Stainless Steel, Three-point bending, Fatigue

Published: October 1, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Uhríčik M, Oravcová M, Palček P, Chalupová M. The Stress Detection and the Fatigue Lifetime of Stainless Steel during Three-Point Bending Cyclic Loading. Manufacturing Technology. 2016;16(5):1179-1182. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/5/1179.
Download citation

References

  1. STEVENSON, M. E., BARKEY, M.E., BRADT, R.C. (2002). Fatigue failures of austenitic stainless steel orthopedic fixation devices, pp.57-64. ASM International, Vol. 2, No.3. Go to original source...
  2. SUDHAKAR, K.V. (2005). Metallurgical investigation of a failure in 316L stainless steel orthopaedic implant, pp.249-256. Engineering Failure Analysis, Vol. 12. Go to original source...
  3. ZATKALÍKOVÁ, V., MARKOVIČOVÁ, L., BELAN, J., LIPTÁKOVÁ, T. (2014). Variability of local corrosion attack morphology of AISI 316Ti stainless steel in aggressive chloride environment, pp.493-497. Manufacturing Technology, Vol.14, No.3, ISSN 1213-2489. Go to original source...
  4. NOVÝ, F., ZATKALÍKOVÁ, V., BOKŮVKA, O., MIKOVÁ, K. (2013). Gigacycle fatigue endurance of marine grade stainless steels with corrosion pits, pp.99-103. Periodica Polytechna: transportation engineering, Vol.41, No.2. Go to original source...
  5. MARKOVIČOVÁ, L., HURTALOVÁ, L., ZATKALÍKOVÁ, V., GARBACZ, T. (2014). Evaluation of composite structures by light microscopy and image analysis, pp.351-355. Manufacturing Technology, Vol.14, No.3, ISSN 1213-2489. Go to original source...
  6. STANKOVIČOVÁ, Z., DEKÝŠ, V., NOVÁK, P., PELAGIĆ, Z. (2015). Thermoelastic stress analysis - verification of experiment by using numerical simulation, pp.21. Experimentální a výpočtové metody v inženýrství: II. Ročník conference pro mladé vědecké pracovníky.
  7. HURTALOVÁ, L., TILLOVÁ, E. (2013). Elimination of the negative effect of FE-rich intermetallic phases in secondary (recycled) aluminium cast alloy, pp.44-50. Manufacturing Technology, Vol.13, Num.1, ISSN 1213-2489. Go to original source...
  8. PLUM, R. et al. (1999). Extended thermoelastic stress analysis applied to carbon steel and CFRP. [online]. Avalaible online at: <http://ebookbrowsee.net/we5a3-pdf-d75918406>.
  9. BRÉMOND, P. (2007). New developments in thermoelastic stress analysis by infrared thermography. [online]. Avalaible online at: <http://www.ndt.net/article/panndt2007/papers/138.pdf>.