Manufacturing Technology 2017, 17(5):665-668 | DOI: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/665

Phase Composition of Mechanically Alloyed Titanium and Iron Aluminides

Adriana Bernatiková, Filip Průša, Pavel Novák
University of Chemistry and Technology Prague, Department of Metals and Corrosion Engineering, Technická 5, 166 28 Prague 6, Czech Republic

Aluminides belong in these days group of materials, which can be used as a good replacement of stainless steels, for whom they owe attractive mechanical properties, or nickel superalloys, which are too heavy. These materials are used in aerospace industry as well as in automotive industry. Good corrosion and oxidation resistance and high specific strenght even up to high temperatures predict them to be also used for high temperature applications. In this paper, mechanical alloying was used. During mechanical alloying differences between TiAl and FeAl systems were seen. Iron aluminide formed single phased structure, whereas titanium aluminide formed preferentially two-phase structure.

Keywords: mechanical alloying, titanium aluminides, iron aluminides, phase composition

Published: October 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bernatiková A, Průša F, Novák P. Phase Composition of Mechanically Alloyed Titanium and Iron Aluminides. Manufacturing Technology. 2017;17(5):665-668. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/665.
Download citation

References

  1. ZHANG, Z., LI, X., DONG, H. (2015). Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction. In: Acta Materialia, Vol. 83, No. 15, pp. 341-35. Elsevier, UK Go to original source...
  2. KOTHARI, K., RADHAKRISHNAN, R., WERELEY, N. M. (2012). Advances in gamma titanium aluminides and their manufacturing techniques. In: Progress in Aerospace Sciences, Vol. 55, pp. 1-16. Elsevier, USA Go to original source...
  3. NESPER, R. (1996). Intermetallics. In: Angewandte chemie, Vol. 108, No. 6, pp. 726-727. WILEY-VCH, Germany Go to original source...
  4. ABDALLAH, Z., DING, R., MARTIN, N., DIXON, M., BACHE, M. (2016). Creep deformation mechanisms in a γ titanium aluminide. In: Materials Science & Engineering A, Vol. 673, No. 15, pp. 616-623. Elsevier, UK Go to original source...
  5. ŁYSZKOWSI, R., BYSTRZYCKI, J. (2014). Hot deformation and processing maps of a Fe-Al intermetallic alloy. In: Materials Characterization, Vol. 96, pp. 196-205. Elsevier, Poland
  6. NEGACHE, M., TAIBI, K., SOUAMI, N., BOUCHEMEL, H., BELKADA, R. (2013). Effect of Cr, Nb and Zr additions on the aqueous corrosion behavior of iron-aluminide. In: Intermetallics, Vol. 36, pp. 73-80. Elsevier, Algeria Go to original source...
  7. PRŮŠA, F., VOJTĚCH, D., BERNATIKOVÁ, A., DVORSKÝ, D. (2015). Mechanical alloying: A way how to improve properties of aluminium alloys. In: Manufacturing Technology, Vol. 15, No. 6, pp. 1036-1043, Czech Republic. Go to original source...
  8. NOVÁK, P., SALVETR, P., PECENOVÁ, Z. (2015). Intermetallics - Synthesis, production, properties, In: Manufacturing Technology, Vol. 1ř, No. 6, pp. 1024-1028, Czech Republic
  9. SURYANARAYANA, C., CHEN, G.-H., FREFER, A., FROES, F. H. (1992). Structural evolution of mechanically alloyed TiAl alloys. In: Materials Science and Engineering, Vol. 158, No. 1, pp. 93-101, University of Idaho, USA Go to original source...
  10. BEKE, D. L., BAKKER, H., LOEFF, P. I. (1991). On the elastic mismatch in the order-disorder transformation and solid state amorphization of intermetallic compounds-II. Criteria for the solid-amorphous transformation in intermetallic compounds. In: Acta Metallurgica, Vol. 39, pp. 1267-1273, Great Britain Go to original source...
  11. BASU, S., SHANKAR, M. R. (2014). Microstructure and deformation during serve shear deformation at small length-scales. In: Scripta Materialia, Vol. 72-73, pp. 51-54, Elsevier, USA Go to original source...