Manufacturing Technology 2018, 18(1):22-28 | DOI: 10.21062/ujep/47.2018/a/1213-2489/MT/18/1/22

High-Temperature Processing and Recovery of Cu Catalyst Promoter

Mária Čarnogurská1, Marián Lázár1, Miroslav Příhoda2, Blanka Skočilasová3, Peter Kurilla1, Jiří Marek2
1 Faculty of Mechanical Engineering, Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic
2 Faculty of Metallurgy and Materials Engineering, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
3 Faculty of Mechanical Engineering, J. E. Purkyně University in Ústí nad Labem, Na Okraji 1001/7,400 01 Ústí nad Labem, Czech Republic

The following article describes the results obtained from the plasma smelting reduction of a particular type of waste - catalyst with a Cu promoter. The catalyst is used for the process of a selective reduction of nitrobenzene (C6H5NO2) to aniline (C6H5NH2). The plasma smelting occurs in a reducing atmosphere. Six samples of the exhausted catalyst with a Cu promoter were used in the smelting process. The chemical composition of the promoter exhibited a presence of a wide range of elements. Fluorspar (fluorite) and calcium oxide (quicklime) were used as the slag-agent for the given testing. Reducing agent was the powdery graphite - waste from the manufacture of the graphite semi-finished product. The results of experiments, carried out at 80 kVA in the plasma reactor, proved that this type of catalyst can be, in fact, disposed of using the plasma technology. Recyclability of the metal contained in this waste is high; Cu ranges around 88%. Moreover, the article describes the chemical analysis of the slag, fly ash and the composition of synthesis gas in all samples of the processed catalyst.

Keywords: Waste, Catalyser, Cu promoter, Plasma technology

Published: February 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Čarnogurská M, Lázár M, Příhoda M, Skočilasová B, Kurilla P, Marek J. High-Temperature Processing and Recovery of Cu Catalyst Promoter. Manufacturing Technology. 2018;18(1):22-28. doi: 10.21062/ujep/47.2018/a/1213-2489/MT/18/1/22.
Download citation

References

  1. ČARNOGURSKÁ, M., LÁZÁR, M., PUŠKÁR, M., LENGYELOVÁ, M., VÁCLAV, J., ŠIRILLOVÁ, Ľ. (2015). Measurement and evaluation of properties of MSW fly ash treated by plasma. Measurement. Vol. 62, pp. 155-161. Elsevier. Doi.org/10.1016/j.measurement.2014.11.014 Go to original source...
  2. LÁZÁR, M., ČARNOGURSKÁ, M., BRESTOVIČ, T., JASMINSKÁ, N., KMEŤOVÁ, Ľ., KAPUSTOVÁ, Ľ., JEZNÝ, T. (2016). High-Temperature Processing of Asbestos-Cement Roofing Material in a Plasma Reactor. Pol. J. Environ. Stud., Vol. 25, No. 5, pp.2027-2033. Olsztyn 5, Poland. Doi:10.15244/pjoes/62959 Go to original source...
  3. LÁZÁR, M., ČARNOGURSKÁ, M., LENGYELOVA, M., KORBA, J. (2015). High-temperature gasification of RDF wastes and melting of fly ash obtained from the incineration of municipal wastes. Acta Polytechnica. Vol. 55, No. 1, pp. 1-6. Czech Technical University Praha. Doi:10.14311/AP.2015.55.0001 Go to original source...
  4. ČARNOGURSKÁ, M., LÁZÁR, M. (2013). Plasma technology for waste treatment and recovery. TU Kosice (in Slovak).
  5. STANCEKOVA, D., SEMCER, J., SAJGALIK, M., JANOTA, M. (2014). Heat-Affected Zone of Plasma of Laser Cut Materials. Manufacturing Technology, Vol. 14, No. 3, pp. 451-456. UJEP, Ústi nad Labem. Go to original source...
  6. DOBROCKY, D., KUSMIC, D. (2015). The Effect of Plasma Nitriding Process on the Change of Dynamic Parameters of Steel DIN 1654/4. Manufacturing Technology, Vol. 15, No. 1, pp. 14-20. UJEP, Ústi nad Labem. Go to original source...
  7. STUDENÝ, Z. (2015). Analysis of the Influence of Initiating Inclusions on Fatigue Life of Plasma Nitrided Steels Manufacturing Technology, Vol. 15, No. 1, pp. 99-105. UJEP, Ústi nad Labem. Go to original source...
  8. MABROUK, M., MARCHAND, M., BARONNET, J. M., LEMONT, F. (2016). Trichloroethylene Combustion in a Submerged Thermal Plasma: Results and Chemical Kinetics Model. Plasma Chem Plasma Process, Vol. 36, pp.085-1110. Springer Link. Doi:10.1007/s11090-016-9693-6 Go to original source...
  9. LUDVIGSSON, B. M, LARSSON, S. R. (2003). Anode slimes treatment: The boliden experience. JOM. Vol. 55, No. 4, pp. 41-44. Springer Link. Doi:10.1007/s11837-003-0087-x Go to original source...
  10. IMRIŠ, I., KLENOVČANOVÁ, A., IMRIŠ, M. (2000). Thermodynamics of Iron Reduction from Carbon's Process Leaching Residues: In: 39th Annual Conf. of Metallurgists of CIM, A Bright Future Through Innovation Ottawa, Canada, August 20-23,71-81.
  11. HILLIARD, H. E., DUNNING, B. W., KRAMER, D. A., SOBOROFF, D. M. (1985). Hydrometallurgical treatment of electronic scrap to recover gold and silver. Bureau of Mines Report of Investigations. RI-8940, 1-20. CDC Stacks, Public Health Publications.
  12. DONG, H., ZHAO, J., CHEN, J., WU, Y., LI, B. (2015). Recovery of platinum group metals from spent catalyst. International Journal of Mineral Processing. 145:108-113. Elsevier. Doi.org/10.1016/j.minpro.2015.06.009 Go to original source...
  13. BOUSA, M., VESELY, F., KURILLA, P., KONDAS, J. (2008). Precious mtals catalysts treatment in Plasma Heated Reactors, 32nd International precious metals conference. 7-10. Jun 2008, Phoenix - Arizona USA. 1:279-291.
  14. CZERWINSKI, A. (2005). Akumulatory, baterie, ogniwa. Wydawnictwa Komunikacji i lacznosci, Warszawa.
  15. CANHAM, D. L, AURICH, V. G. (1991). Recovery of Metals from Spent Catalysts in a DC Plasma Furnace: EMC' 91. Non-ferrous Metallurgy - Present and Future. 241-247. Springer Link. Doi: 10.1007/978-94-011-3684-6_24 Go to original source...
  16. JANDAČKA, J., NOSEK, R., HOLUBČÍK, M. (2011). Effect of selected additives to properties of wood pellets and their production. Acta Facultatis Xylologiae. 53(2):85-91. TU Zvolen.
  17. SKOČILASOVÁ, B., SKOČILAS, J. (2015). Solidification of the Aluminium Alloy in the Mold. Manufacturing Technology, Vol. 15, No. 5, pp. 909-914. UJEP, Ústi nad Labem. Go to original source...
  18. CUI CUI, J., ZHANG, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials. 158(2-3):228-256. Elsevier. Doi.org/10.1016/j.jhazmat.2008.02.001 Go to original source...
  19. JHA, M.K., LEE, J. CH., KIM, M. S., JEONG, J., KIM, B. S., KUMAR, V. (2013). Hydrometallurgical recovery /recycling of platinum by the leaching of spent catalysts: A review. Hydrometalurgy. Vol. 133, pp. 23-32. Elsevier. Doi.org/10.1016/j.hydromet.2012.11.012 Go to original source...
  20. KIM, E. Y., KIM, M. S., LEE, J. CH, JEONG, J., PANDEY B. D. (2011). Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in HCl solution. Hydrometalurgy. Vol. 107, No. 3-4, pp. 124-132. Elsevier. Doi.org/10.1016/j.hydromet.2011.02.009 Go to original source...
  21. PING, Z., YUN, F. Z., JIE, L., QIANG, L., GUANGREN, Q., MING, Z. (2009). Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board. Journal of Hazardous Materials. Vol. 166, No. 2-3, pp. 746-750. Elsevier. Doi.org/10.1016/j.jhazmat.2008.11.129 Go to original source...
  22. SUN, Z. H. I, XIAO, Y., SIETSMA, J., AGTERHUIS, H., VISSER, G., YANG, Y. (2015). Selective copper recovery from complex mixtures of end-of-life electronic products with ammonia-based solution. Hydrometalurgy. Vol. 152, pp. 91-99. Elsevier. Doi.org/10.1016/j.hydromet.2014.12.013 Go to original source...
  23. XIAO, Y., YANG, Y., Van den BERG, J., SIETSMA, J., AGTERHUIS, H., VISSER, G., BOL, D. (2013). Hydrometallurgical recovery of copper from complex mixtures of end-of-life shredded ICT products. Hydrometalurgy. Vol. 140, pp. 128-134. Elsevier. Doi.org/10.1016/j.hydromet.2013.09.012 Go to original source...
  24. SCHOLZ, R., BECKMANN, M., SCHULENBURG, F. (2001). Abfallbehandlung in thermischen Verfahren. Chapter 4: Verbrennung, Vergasung, Pyrolyse, Verfahrens- und Anlagenkonzepte. B. G. Teubner. Stuttgart, Leipzig, Wiesbaden. Go to original source...
  25. SUM, E. Y. L. (1991). The recovery of metals from electronic scrap. JOM. Vol. 43, No. 4, pp. 53-61. Springer Link. Doi:10.1007/BF03220549 Go to original source...
  26. KOLAT, P., MALÝ, R., BLEJCHAR, T., KADLEC, Z., ČECH, B. Plasma technology in Czech power stations. 24th Annual International Pittsburgh Coal Conference 2007; Johanesburg; South Africa; 10 September 2007 through 14 September 2007; Code 96893

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.