Manufacturing Technology 2018, 18(1):124-129 | DOI: 10.21062/ujep/64.2018/a/1213-2489/MT/18/1/124
The Role of Modelling of Road Unevennesses in Vehicle Dynamics
- 1 Faculty of Mechanical Engineering, TU in Košice, Letná 9, 042 00 Košice
- 2 Faculty of Mechanical Engineering, J. E. Purkyne University in Usti nad Labem, Pasteurova 3334/7, 400 96 Ústí nad Labem
It is well known that the dynamic behaviour of a vehicle is affected by the design parameters of its suspension system, especially by the stiffnesses of the suspension springs, damping coefficients and tire stiffnesses. Another important factor influencing vehicle vibration is kinematic excitation caused by uneven roads. It may significantly affect the comfort of the driver and passengers, safety of the ride and relative displacements between the sprung and unsprung masses. The paper presents mathematical models of both deterministic and random road unevennesses and numerical simulation of vertical dynamics of planar vehicle models with kinematic excitation caused by these road unevennesses. When examining transient phenomena, standardized obstacles according to STN 30 0560, resp. EU Directive 85/3/EW6-III are applied. Random unevennesses can be obtained experimentally, or generated by the Shinozuka method to create the mathematical model of an uneven road with a specified power spectral density. Actual vehicle prototypes need to be tested on test circuits with different surfaces.
Keywords: road, modelling, vehicle dynamics, optimization, stochastic excitation
Published: February 1, 2018 Show citation
References
- EU 85/3/EW 6 - III: 1985.
- MÚČKA, P. (1999). Odozva modelu nákladného vozidla s aktívnym odpružením na osamelú prekážku. Strojnícky časopis, vol. 59, 1999, pp. 265-277.
- NIGAM, N. C., NARAYANAN, S. (1994). Applications of Random Vibration. Springer-Verlag, Berlin, 1994.
- Optimization Toolbox for Use with Matlab, Userʼs Guide Version 2 (2000). The MathWorks, Inc., Natick (USA), 2000.
- RAHMAN, M. (1991). Applied Differential Equations for Scientists and Engineers, Vol. 1. Ordinary Differential Equations. Computational Mechanics Publications, Southampton, 1994.
- STN 30 0560: 1970.
- VOLEK, J., SEGLA, Š., SOUKUP, J. (2007). Analytický výpočet vertikálních posuvů trolejbusu Škoda 21Tr při přejezdu soustavy překážek dle ČSN ve stanovených bodech. Výzkumná zpráva, Fakulta výrobních technologií a managementu UJEP, Ústí nad Labem, 2007.
- HAUSER, V., NOZHENKO, O. S., KRAVCHENKO, K. O., LOULOVÁ, M., GERLICI, J., LACK, T. (2017). Impact of Wheelset Steering and Wheel Profile Geometry to the Vehicle Behavior when Passing Curved Track, Manufacturing Technology ISSN 1213-2489 vol. 17, pp.306-312
Go to original source...
- CHALUPA, M, VEVERKA, J. (2016). Handling Simulation of Vehicles, Manufacturing Technology ISSN 1213-2489 vol. 16, pp.1264-1269
Go to original source...
- KLIMENDA, F., SVOBODA, M., RYCHLIKOVA, L., PETRENKO, A. (2015). Investigation of Vertical Vibration of a Vehicle Vodel Driving Through a Horizontal Curve, Manufacturing Technology ISSN 1213-2489 vol. 15, pp.143-148
Go to original source...
- CHALUPA, M. (2015). The Using of Vehicle Moving Simulation to Proposal of Construction Work, Manufacturing Technology, ISSN 1213-2489 vol. 15, pp.845-850
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.