Manufacturing Technology 2018, 18(3):477-481 | DOI: 10.21062/ujep/124.2018/a/1213-2489/MT/18/3/477

Ti6Al4V Nanotubes Filled with Silver Nanoparticles as a Possible Antibacterial Surface for Implants

Eva Průchová1, Michaela Kosová2, Petra Jarolímová1, Luděk Joska1, Vojtěch Hybášek1
1 University of Chemistry and Technology, Prague, Department of Metals and Corrosion Engineering, Technická 5, Praha 6, Czech Republic
2 University of Chemistry and Technology, Prague, Department of Dairy, Fat and Cosmetic Science, Technická 5, Praha 6, Czech Republic

The presented work was focused on the use of Ti6Al4V alloy with nanostructured surface and deposited silver nanoparticles as a material with antibacterial surface. Thanks to the electrochemically formed nanotubular oxide structure, a large area was available for silver deposition. Silver was photo-reduced from the silver nitrate solution. The ultrasonic treatment allowed the penetration of a silver source electrolyte into the whole depth of the tubes. Transmission electron microscopy images confirmed the presence of silver nanoparticles with size from units of nanometers up to 15 nm. Nanosilver was present throughout the length of the nanotubes. Samples with photo-reduced silver will be able to provide antibacterial activity not only in critical hours after implantation but also in the longer term due to the subsequent release of silver from the volume of nanotubes. The prolonged antibacterial effect has been demonstrated against Staphylococcus aureus.

Keywords: Titanium, Nanostructure, Nanosilver, Antibacterial, Photo-reduction

Published: June 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Průchová E, Kosová M, Jarolímová P, Joska L, Hybášek V. Ti6Al4V Nanotubes Filled with Silver Nanoparticles as a Possible Antibacterial Surface for Implants. Manufacturing Technology. 2018;18(3):477-481. doi: 10.21062/ujep/124.2018/a/1213-2489/MT/18/3/477.
Download citation

References

  1. DONACHIE, M. J. (2000). Titanium: A technical guide. Materials Park: ASM International, Vol. 2 Go to original source...
  2. FOUSOVÁ, M., VOJTĚCH, D., KUBÁSEK, J. (2016). Titanium alloy Ti-6Al-4V prepared by Selective Laser Melting (SLM). In: Manufacturing Technology, Vol. 16, No. 4, pp. 691-697. Go to original source...
  3. MACAK, J. M., SCHMUKI, P. (2006). Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. In: Electrochimica Acta, Vol. 52, No. 3, pp. 1258-1264. Go to original source...
  4. MACAK, J. M., ALBU, S., KIM, D. H., PARAMASIVAM, I., ALDABERGEROVA, S., SCHMUKI, P. (2007). Multilayer TiO2-nanotube formation by two-step anodization. In: Electrochemical and Solid State Letters, Vol. 10, No. 7, pp. K28-K31. Go to original source...
  5. FOJT, J. (2012). Ti-6Al-4V alloy surface modification for medical applications. In: Applied Surface Science, Vol. 262, No., pp. 163-167. Go to original source...
  6. FILOVA, E., FOJT, J., KRYSLOVA, M., MORAVEC, H., JOSKA, L., BACAKOVA, L. (2015). The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. In: International Journal of Nanomedicine, No., pp. 7145. Go to original source...
  7. ERCAN, B., KUMMER, K. M., TARQUINIO, K. M., WEBSTER, T. J. (2011). Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. In: Acta Biomater, Vol. 7, No. 7, pp. 3003-12. Go to original source...
  8. FERRARIS, S., SPRIANO, S. (2016). Antibacterial titanium surfaces for medical implants. In: Mater Sci Eng C Mater Biol Appl, Vol. 61, No., pp. 965-78. Go to original source...
  9. MOHAMMED, M. T., KHAN, Z. A., SIDDIQUEE, A. N. (2014). Surface Modifications of Titanium Materials for developing Corrosion Behavior in Human Body Environment: A Review. In: Procedia Materials Science, Vol. 6, No., pp. 1610-1618. Go to original source...
  10. ARENAS, M. A., PEREZ-JORGE, C., CONDE, A., MATYKINA, E., HERNANDEZ-LOPEZ, J. M., PEREZ-TANOIRA, R., DE DAMBORENEA, J. J., GOMEZ-BARRENA, E., ESTEBA, J. (2013). Doped TiO2 anodic layers of enhanced antibacterial properties. In: Colloids Surf B Biointerfaces, Vol. 105, No., pp. 106-12. Go to original source...
  11. GALLARDO-MORENO, A. M., MULTIGNER, M., PACHA-OLIVENZA, M. A., LIEBLICH, M., JIMENEZ, J. A., GONZALEZ-CARRASCO, J. L., GONZALEZ-MARTIN, M. L. (2009). Influence of slight microstructural gradients on the surface properties of Ti6Al4V irradiated by UV. In: Appl. Surf. Sci., Vol. 255, No. 22, pp. 9105-9111. Go to original source...
  12. SINGH, M., SINGH, S., PRASAD, S., GAMBHIR, I. (2008). Nanotechnology in medicine and antibacterial effect of silver nanoparticles. In: Digest Journal of Nanomaterials and Biostructures, Vol. 3, No. 3, pp. 115-122.
  13. SILVER, S. (2003). Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. In: FEMS Microbiology Reviews, Vol. 27, No. 2-3, pp. 341-353. Go to original source...
  14. BOSETTI, M., MASSE, A., TOBIN, E., CANNAS, M. (2002). Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. In: Biomaterials, Vol. 23, No. 3, pp. 887-892. Go to original source...
  15. HARRASSER, N., JÜSSEN, S., BANKE, I. J., KMETH, R., VON EISENHART-ROTHE, R., STRITZKER, B., GOLLWITZER, H., BURGKART, R. (2015). Antibacterial efficacy of titanium-containing alloy with silver-nanoparticles enriched diamond-like carbon coatings. In: AMB Express, Vol. 5, No., pp. 77. Go to original source...
  16. ZHANG, W., LIU, W., LIU, Y., WANG, C. (2009). Tribological behaviors of single and dual sol-gel ceramic films on Ti-6Al-4V. In: Ceramics International, Vol. 35, No. 4, pp. 1513-1520. Go to original source...
  17. CHANG, C., HUANG, X., LIU, Y., BAI, L., YANG, X., HANG, R., TANG, B., CHU, P. K. (2015). High-current anodization: A novel strategy to functionalize titanium-based biomaterials. In: Electrochimica Acta, Vol. 173, No., pp. 345-353. Go to original source...
  18. ZLAMAL, M., MACAK, J. M., SCHMUKI, P., KRÝSA, J. (2007). Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. In: Electrochemistry Communications, Vol. 9, No. 12, pp. 2822-2826. Go to original source...
  19. HOU, X., MAO, D., MA, H., AI, Y., ZHAO, X., DENG, J., LI, D., LIAO, B. (2015). Antibacterial ability of Ag-TiO2 nanotubes prepared by ion implantation and anodic oxidation. In: Materials Letters, Vol. 161, No., pp. 309-312. Go to original source...
  20. ESFANDIARI, N., SIMCHI, A., BAGHERI, R. (2014). Size tuning of Ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implants. In: Journal of Biomedical Materials Research Part A, Vol. 102, No. 8, pp. 2625-2635. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.