Manufacturing Technology 2018, 18(4):645-649 | DOI: 10.21062/ujep/154.2018/a/1213-2489/MT/18/4/645

Alloying of Fe-Al-Si Alloys by Nickel and Titanium

Kateřina Nová, Pavel Novák, Adrian Arzel, Filip Průša
University of Chemistry and Technology, Prague, Department of Metals and Corrosion Engineering, Technická 5, Praha 6, Czech Republic

This paper focuses on one part of the otherwise very complex research of intermetallic compounds based on Fe-Al-Si at the UCT Prague. These materials seem to be suitable candidates for use in extreme conditions (high temperatures, oxidation and sulfidation environment, ...), especially in the aerospace and automotive industries. The aim of this work was to describe the influence of alloying elements - Ni and Ti on phase composition, microstructure, mechanical and oxidative properties, in two specific systems - FeAl35Si5 and FeAl20Si20 (in weight %).

Keywords: Intermetallics, Mechanical properties, Powder metallurgy, Spark Plasma Sintering

Published: September 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Nová K, Novák P, Arzel A, Průša F. Alloying of Fe-Al-Si Alloys by Nickel and Titanium. Manufacturing Technology. 2018;18(4):645-649. doi: 10.21062/ujep/154.2018/a/1213-2489/MT/18/4/645.
Download citation

References

  1. PENG, H. (2013). 8 - Brazing of nickel, ferrite and titanium-aluminum intermetallics, In: Advances in Brazing, D.P. Sekulić, Editor, Woodhead Publishing. p. 221-248. Go to original source...
  2. NOVÁK, P., LEJČEK, P. (2008). Fyzika kovů. Vysoká škola chemicko-technologická v Praze: Praha.
  3. VODIČKOVÁ, V., ET AL. (2018). High temperature properties of non-critical Fe-Al alloys doped by non critical or "slightly-critical" elements. IOP Conference Series: Materials Science and Engineering, Vol: 329(1): p. 012007. Go to original source...
  4. https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_fr. [cited 2018-08-20].
  5. PRŮŠA, F., ET AL. (2015). Structure and mechanical properties of Al-Si-Fe alloys prepared by short-term mechanical alloying and spark plasma sintering. In: Materials & Design, Vol. 75, pp. 65-75. Go to original source...
  6. NOVÁK, P., ET AL. (2014). Microstructure Evolution of Fe-Al-Si and Ti-Al-Si Alloys during High-Temperature Oxidation. In: Materials Science Forum, Vol: 782: p. 353-358. Go to original source...
  7. NOVÁK, P., ET AL. (2010). Intermediary phases formation in Fe-Al-Si alloys during reactive sintering. In: Journal of Alloys and Compounds, Vol: 497(1): p. 90-94. Go to original source...
  8. NOVÁ, K., ET. AL. (2018). The effect of production process on properties of FeAl20Si20. In: Manufacturing Technology, Vol: 18(2), p. 295-298. Go to original source...
  9. VALALÍK, M., NOVÁK, P., KUBATÍK, T.F., VOJTĚCH, D. (2015). Unconventional Method of Preparation Intermetallic Phases Fe-Al by Mechanical Alloying in Comparison to Reactive Sintering. In: Manufacturing Technology, Vol. 15(1) p. 105-109. Go to original source...
  10. SCHMITT, A., ET AL. (2017). Creep of binary Fe-Al alloys with ultrafine lamellar microstructures. In: Intermetallics, Vol: 90: p. 180-187. Go to original source...
  11. STOLOFF, N.S. (1998). Iron aluminides: present status and future prospects. In: Materials Science and Engineering: A, Vol. 258, No. 1-2, pp. 1-14.10. Go to original source...
  12. DEEVI, S.C., SIKKA, V.K., AND LIU, C.T., (1997). Processing, properties, and applications of nickel and iron aluminides. In: Progress in Materials Science, Vol: 42(1): p. 177-192. Go to original source...
  13. HADEF, F. (2016). Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review. In: Journal of Magnetism and Magnetic Materials, Vol. 419, pp. 105-118. Go to original source...
  14. COUPERTHWAITE, R.A., CORNISH, L.A. and MWAMBA, I.A. (2016) Cold-spray coating of an Fe-40 at.% Al alloy with additions of ruthenium. J. S. Afr. Inst. Min. Metall. [online - cited 2018-08-20]. Vol. 116, p. 927-934. Go to original source...
  15. NOVÁK, P., ET AL. (2011). Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air. In: Intermetallics, Vol: 19: p. 1306-1312. Go to original source...
  16. RUDINSKY, S., ET AL. (2015). Spark plasma sintering of an Al-based powder blend. In: Materials Science and Engineering: A, Vol. 621, pp. 18-27. Go to original source...
  17. PRŮŠA, F., ET AL. (2017). Příprava ultrajemnozrných nanokrystalických materiálů mechanickým legováním a slinováním v plazmatu. In: Chemické listy, Vol. 111, pp. 314-321.
  18. TSUKERMAN, S.A. (1965). INTRODUCTION, in Powder Metallurgy. Pergamon. p. vii-xi. Go to original source...
  19. BARIN, I. (2008). Thermochemical data of pure substances. Wiley-VCH Verlag GmbH, 3rd edition.

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.