Manufacturing Technology 2018, 18(5):742-747 | DOI: 10.21062/ujep/170.2018/a/1213-2489/MT/18/5/742

Effect of Particle Size on Surface Smoothness of Bio-Briquettes Produced from Agricultural Residues

Gürkan Alp Kagan Gürdil, Bahadir Demirel
Department of Agricultural Machineries and Technologies Engineering, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey

This study analyzed the surface smoothness of some fuel briquettes produced from hazelnut, corn and sunflower residues. The residues were briquetted with different particle sizes (PS: 2-5 mm and 7-10 mm) under 80 MPa and 160 MPa. The surface smoothness of them were analyzed by image analyze from their high quality photos. In conclusion, it's seen obviously that the smaller particle sized briquettes had smoother surface than the ones produced with bigger PS. Furthermore, they had better results of compaction, toughness and physical properties.

Keywords: Briquette, Image, Residue, Smoothness, Tumbler index

Published: October 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Alp Kagan Gürdil G, Demirel B. Effect of Particle Size on Surface Smoothness of Bio-Briquettes Produced from Agricultural Residues. Manufacturing Technology. 2018;18(5):742-747. doi: 10.21062/ujep/170.2018/a/1213-2489/MT/18/5/742.
Download citation

References

  1. SINGH, R.N., BHOI, P.R., PATEL, S.R. (2007). Modification of commercial briquetting machine to produce 35 mm diameter briquettes suitable for gasification and combustion. In: Renewable Energy, Vol. 32, No. 3, pp. 474 - 479. Go to original source...
  2. FONT, R., CONESA, J.A., MOLTÓ, J., MUÑOZ, M. (2009). Kinetics of pyrolysis and combustion of pine needles and cones. In: Journal of Analytical and Applied Pyrolysis, Vol.85, No. 1, pp. 276 - 286. Go to original source...
  3. PANWAR, V., PRASAD, B., WASEWAR, K.L. (2011). Biomass residue briquetting and characterization. In: Journal of Energy Engineering, Vol. 137, No. 2, pp. 108 - 114. Go to original source...
  4. GRANADA, E., LÓPEZ GONZÁLEZ, L.M., MÍGUEZ, J.L., MORAN, J. (2002). Fuel ligno-cellulosic briquettes, die design and products study. In: Renewable Energy, Vol. 27, No. 4, pp. 561 - 573. Go to original source...
  5. ADAPA, P., TABIL, L., SCHOENAU, G. (2009). Compaction characteristics of barley, canola, oat and wheat straw. In: Biosystems Engineering, Vol. 104, No. 3, pp. 335 - 344. Go to original source...
  6. MANDAL, S., KUMAR, G.V.P., BHATTACHARYA, T.K., TANNA, H.R., JENA, P.C. (2018). Briquetting of Pine Needles (Pinus roxburgii) and Their Physical, Handling and Combustion Properties. In: Waste and Biomass Valorization, https://doi.org/10.1007/s12649-018-0239-4, pp. 1-10. Go to original source...
  7. BRO®EK, M. (2015). Briquettes made from wood residues. In: Manufacturing Technology, Vol. 15, No. 2, pp. 126 - 130. Go to original source...
  8. HOOVER, A.N.; TUMULURU, J.S.; TEYMOURI, F.; MOORE, J.; GRESHAM, G. (2014). Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover. In: Bioresource Technology, Vol.164, pp. 128 - 135. Go to original source...
  9. KALIYAN, N.; MOREY, R.V. (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. In: Bioresource Technology, Vol. 101, pp.1082 - 1090. Go to original source...
  10. KARUNANITHY, C.; WANG, Y.; MUTHUKUMARAPPAN, K.; PUGALENDHI, S. (2012). Physiochemical characterization of briquettes made from different feedstock. In: Biotechnology Research International, Vol. 2012, pp. 1 - 12. Go to original source...
  11. KALIYAN, N.; MOREY, R.V. (2009). Factors affecting strength and durability of densified biomass products. In: Biomass Bioenergy, Vol. 33, pp. 337 - 358. Go to original source...
  12. BRO®EK, M. (2018). Briquettes properties after four years storage. In: Manufacturing Technology, Vol. 18, No. 1, pp. 11 - 15. Go to original source...
  13. SOUZA-SANTOS, M. (1999). A feasibility study of an alternative power generation system based on biomass gasification/gas turbine concept. In: Fuel, Vol. 78, No. 5, pp. 529 - 538. Go to original source...
  14. KIM, Y.D., YANG, C.W., KIM, B.J., KIM, K.S., LEE, J.W., MOON, J.H., YANG, W., TAE, U.Y., DO LEE, U. (2013). Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier. In: Applied Energy, Vol. 112, pp. 414 - 420. Go to original source...
  15. MARINELLI, J., CARSON, J.W. (1992). Solve solids flow problems in bins, hoppers, and feeders. In: Chemical Engineering Progress, Vol. 88, pp. 22 - 28.
  16. TUMULURU, J.S., WRIGHT, C.T., HESS, J.R., KENNEY, K.L. (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. In: Biofuels Bioproducts & Biorefining, Vol. 5, pp. 683 - 707. Go to original source...
  17. ANDERSON, N., CHUNG, W., LOEFFLER, D., JONES, J.G. (2012). A productivity and cost comparison of two systems for producing biomass fuel from roadside forest treatment residues. In: Forest Products Journal, Vol. 62, No. 3, pp. 222 - 233. Go to original source...
  18. BERGMAN, P.C., KIEL, J.H. (2005). Torrefaction for biomass upgrading. In: 14th European Biomass Conference, pp. 17-21. Paris, France.
  19. BÍLEK, O., PATA, V., KUBI©OVÁ, M., ØEZNÍÈEK, M. (2018). Mathematical methods of surface roughness evaluation of areas with a distinctive inclination. In: Manufacturing Technology, Vol. 18, No. 3, pp. 363 - 368. Go to original source...
  20. BAKSA, T., SCHORNIK, V., ADAMEK, P., HRONEK, O., ZETEK, M. (2018). Effects of grinding conditions and strategy on the quality of the cutting edge. In: Manufacturing Technology, Vol. 18, No. 1, pp. 3 - 7. Go to original source...
  21. KRI®AN, P., ©OO©, L., MATÚ©, M., BENIAK, J., SVÁTEK, M. (2015). Research of significant densification parameters influence on final briquettes quality. In: Wood Research, Vol. 60, No. 2, pp. 301 - 316.
  22. ZHANG, J., GUO, Y. (2014). Physical properties of solid fuel briquettes made from caragana korshinskii kom. In: Powder Technology, Vol. 256, pp. 293 - 299. Go to original source...
  23. SUN, B., YU, J., TAHMASEBI, A., HAN, Y. (2014). An experimental study on binderless briquetting of chinese lignite: effects of briquetting conditions. In: Fuel Processing Technology, Vol. 124, pp. 243 - 248. Go to original source...
  24. GUO, Q.; XUELI, C.; HAIFENG, L. (2012). Experimental research on shape and size distribution of biomass particle. In: Fuel, Vol. 94, pp. 551 - 555. Go to original source...
  25. SUTRISNO, T., ANGGONO, W., SUPRIANTO, F.D., SIAHAAN, I.H. (2017). The effects of particle size and pressure on the combustion characteristics of cerbera manghasleaf briquettes. In: ARPN Journal of Engineering and Applied Sciences, Vol. 12, No. 4, pp. 931 - 936.
  26. GENASEN, V., ROSENTRATER, K.A., MUTHUKUMARAPPAN, K. (2008), Flowability and handling characteristics of bulk solids and powders-A review with implication for DDGS. In: Biosystem Engineering, Vol. 101, pp. 425 - 435. Go to original source...
  27. NDINDENG, S.A., MBASSI, J.E.G., MBACHAM, W.F., MANFUL, J., GRAHAM-ACQUAAH, S., MOREIRA, J., DOSSOU, J., FUTAKUCHI, K. (2015). Quality optimization in briquettes made from rice milling by-products. Energy for Sustainable Development, Vol. 29, pp. 24 - 31. Go to original source...
  28. MISSAGIA, B., GUERRERO, C., NARRA, S., SUN, Y., AY, P., KRAUTZ, H.J. (2011). Physicomechanical properties of rice husk pellets for energy generation. In: Energy Fuels, Vol. 25, pp. 5786 - 5790. Go to original source...
  29. MITCHUAL, S.J., MENSAH, K.F., DARKWA, N.A. (2013), Effect of species, particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes. In: International Journal of Energy and Environmental Engineering, Vol. 4, No. 4, pp. 1 - 6. Go to original source...
  30. DAVIES, R.M., ABOLUDE, D.S. (2013). Ignition and burning rate of water hyacinth briquettes. In: Journal of Scientific Research and Reports, Vol. 2, No.1, pp. 111 - 120. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.