Manufacturing Technology 2018, 18(5):861-865 | DOI: 10.21062/ujep/191.2018/a/1213-2489/MT/18/5/861

Evaluation of Mechanical Properties of Composite Geopolymer Blocks Reinforced with Basalt Fibres

Michal M. Szczypinski1, Petr Louda1, Petr Exnar2, Hiep Le Chi1, Vladimír Kovačič1, Le Van Su1, Lukáš Voleský1, Elif Bayhan1, Totka Bakalova1
1 Faculty of Mechnical Engineering, Depratment of Material Science, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
2 Faculty of Science, Humanities and Education, Department of Chemistry, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic

Geopolymers are modern, amorphous inorganic aluminosilicate polymers with specific composition and properties. However, to use a geopolymer as an engineering material, its mechanical properties need to be improved. As part of this work, a composite material was obtained - the matrix is a geopolymer, and the reinforcement is basalt fibers. Research on the reinforcement of geopolymer material with layers of basalt fabrics was carried out in order to verify the improvement of mechanical properties in relation to non-reinforced material. Static and dynamic mechanical tests for the evaluation of flexural, compressive, splitting tensile and impact strength were carried out. In case of flexural strength the increase was even 150 % and in the case of impact strength over 60 %. The developed basel fabric reinforcement had a significant impact on the mechanical properties of the tested geopolymer composite material.

Keywords: Geopolymer, Basalt fibers, Composite, Mechanical strength, Charpy impact test

Published: October 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Szczypinski MM, Louda P, Exnar P, Chi HL, Kovačič V, Su LV, et al.. Evaluation of Mechanical Properties of Composite Geopolymer Blocks Reinforced with Basalt Fibres. Manufacturing Technology. 2018;18(5):861-865. doi: 10.21062/ujep/191.2018/a/1213-2489/MT/18/5/861.
Download citation

References

  1. DAVIDOVITS, J. (2008), Geopolymer chemistry and application, Institut Géopolymère, Saint-Quentin
  2. MIKUŁA, J., ŁACH. M. (2014). Geopolimery - nowa przyjazna środowisku alternatywa dla betonów na bazie cementu protlandzkiego. Wprowadzenie. In: Rozwiązania proekologiczne w zakresie produkcji. Nowoczesne materiały kompozytowe przyjazne środowisku. (J. Mikuła, (Ed.)), pp. 13-32. Wydawnictwo PK, Cracow.
  3. BAKALOVA, T., M. KOLÍNOVÁ a P. LOUDA. (2014). Micro CT Analysis of Geopolymer Composites. Manufacturing technology, 14 (4). pp. 505 - 510. Go to original source...
  4. HIPS fireproof coatings can really take the heat, http://phys.org/news167306601.html(20.07.2009).
  5. DAVIDOVITS J., Mineral polymers and method of making them, US patent 434 9386, 1982.
  6. VAN JAARSVELD J. G. S., VAN DENVENTER J.S.J., LORENZEN L. (1997) The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications, Materials Engineering, Vol. 10, No. 7, 659-669. Go to original source...
  7. BOCZKOWSKA A., (2016), Podstawowe informacje o kompozytach. In: Kompozyty i techniki ich wytwarzania (A. Boczkowska, G. Krzesiński (Ed.)), pp. 9-50. Oficyna Wydawnicza PW, Warsaw.
  8. BEHERA, P., BAHETI, V., MILITKY, J., & LOUDA, P. (2018). Elevated temperature properties of basalt microfibril filled geopolymer composites. Construction and Building Materials, 163, 850-860. Elsevier Go to original source...
  9. XIEM, N., LOUDA, P., KROISOVA, D., TRUNG, N., & THIEN, N. (2012). The influence of modified fly ash particles by heating on the compressive strength of geopolymer mortar. Chemické Listy. Vol: 106 SI, Supplement 3, pp. s557-s559.
  10. THANG, X. N., LOUDA, P., KROISOVÁ, D., KOVACIC, V., LE CHI, H., VU, N. L. (2012). Effects of commercial fibers reinforced on the mechincal properties of geopolymer mortar. Chemicke Listy. Vol: 106. pp. 560-563.
  11. THANG, X., LOUDA, P., & KROISOVA, D. (2013). Thermophysical properties of woven fabrics reinforced geopolymer composites. World Journal of Engineering, 10(2), pp. 139-144. Emerald. Go to original source...
  12. HUNG, T. D., PERNICA, D., KROISOVÁ, D., BORTNOVSKY, O., LOUDA, P., & RYLICHOVA, V. (2008). Composites base on geopolymer matrices: Preliminary fabrication, mechanical properties and future applications. In Advanced Materials Research (Vol. 55, pp. 477-480). Trans Tech Publications. Go to original source...
  13. BOCZKOWSKA A., KAPUŚCIŃSKI J., LINDEMANN Z., WITEMBERG-PERZYK D., WOJCIECHOWSKI S. (2003) Kompozyty. Wydanie II zmienione, Oficyna Wydawnicza PW, Warsaw
  14. MATTHEWS F. L., RAWLINGS R. D. (1994) Composite Materials: Engineering and Science, Chapman & Hall, London.
  15. ŽMINDÁK, M., PELAGIĆ, Z., SOUKUP, J. (2015). Analysis of Fiber Orientation Influence to Dynamic Properties of Composite Structures, Manufacturing technology, 15 (3), pp. 490-494. Go to original source...
  16. FRISIVERTO PRODUCT CATALOGUE, https://www.frisiverto.cz/data/file/36.pdf.

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.