Manufacturing Technology 2019, 19(4):685-691 | DOI: 10.21062/ujep/356.2019/a/1213-2489/MT/19/4/685

Influence of Sn, Pb, Bi and Sb on the Microstructure and Mechanical Properties of Commercial AlSi8Cu2 Alloy

Jan Šerák, Dalibor Vojtěch, Matěj Reiser
Univeristy of Chemistry and Technology Prague, Department of Metals and Corrosion Engineering, Technicka 5, 166 28 Prague 6, Czech Republic

In this work the influence of selected elements (Sn, Pb, Bi and Sb) on microstructure and mechanical properties of commercial AlSi8Cu2 alloy at four different temperatures (20, 100, 200, 300 and 350 ° C) was studied. The influence of individual elements and their combinations was studied. The content of elements in the range of 0.1-1 wt% was studied. Significant influence of these elements was found from 0.5% content especially at elevated temperatures.

Keywords: aluminum alloys, microstructure, mechanical properties, impurities
Grants and funding:

Czech Science Foundation (project No. GA19-08937S).
Specific university research MST No. 21-SVV/2019.

Published: August 1, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Šerák J, Vojtěch D, Reiser M. Influence of Sn, Pb, Bi and Sb on the Microstructure and Mechanical Properties of Commercial AlSi8Cu2 Alloy. Manufacturing Technology. 2019;19(4):685-691. doi: 10.21062/ujep/356.2019/a/1213-2489/MT/19/4/685.
Download citation

References

  1. MICHNA, Š., LUKÁČ, I., OČENÁŠEK, V., KOŘENÝ, R., DRÁPALA, J., SCHNEIDER, H., MIŠKUFOVÁ, A. et. al. (2005). Encyklopedie hliníku, Adin, s. r. o., Prešov, ISBN 80-89041-88-4.
  2. SVOBODOVÁ, J., HAJDÚCH, P. (2017). Quality Analysis of AlTi5B1 Master Alloy. Manufacturing Technology, Vol. 17, No. 5, 2017, pp. 858-863. J.E. Purkyne University in Usti and Labem. Czech Republic. Go to original source...
  3. DOLEŽAL, J., BRYKSÍ STUNOVÁ, B., KUČERA, V. (2015). Současné poznatky o vlivu doprovodných prvků ve slitinách Al-Si. Vol. LXIII. 2015. pp.345-348.
  4. ZEDAN, Y., SAMUEL, H.W. (2011). Doty Effects of Sn, Bi, and Pb Additions on the Mechanical Properties and Machinability of Al-11%Si-2.25%Cu-0.3%Mg Casting Alloys, 2011. pp. 11-71. American Foundry Society.
  5. BERTELLI, F., et al. (2017). Microstructure, tensile properties and wear resistance correlations on directionally solidified Al-Sn-(Cu; Si) alloys. Journal of Alloys and Compounds, 2017. 695. pp. 3621-3631. Go to original source...
  6. PILOTE, L., GHERIBI, A.E., CHARTRAND, P. (2018). Study of the solubility of Pb, Bi and Sn in aluminum by mixed CALPHAD/DFT methods. In: Applicability to aluminum machining alloys. 2018. 61. pp. 275-287. Calphad. Go to original source...
  7. BAKER, H., (1992). ASM Handbook, Vol. 3 Alloy Phase Diagrams, ASM International
  8. MA, Z., et al. (2010). Parameters controlling the microstructure of Al-11Si-2.5Cu-Mg alloys. Materials & Design, 2010. 31(2) pp. 902-912. Go to original source...
  9. ZHU, J.N., et al. (2018), Microstructure and wear behaviour of Al-20Mg2Si alloy with combined Zr and Sb additions. Journal of Alloys and Compounds, 2018. 767 pp. 1109-1116 Go to original source...
  10. FANG, X. AND FAN, Z. (2006). Rheo-diecasting of Al-Si-Pb immiscible alloys. Scripta Materialia, 2006. 54(5). pp. 789-793. Go to original source...
  11. PALIWAL, M. AND JUNG, I.-H. (2010). Thermodynamic modeling of the Al-Bi, Al-Sb, Mg-Al-Bi and Mg-Al-Sb systems., 2010. 34(1) pp. 51-63. Calphad. Go to original source...
  12. FARAHANY, S., et al. (2013). Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al-Si-Cu alloy (ADC12) by in situ thermal analysis. In:Thermochimica Acta, 2013. 559. pp. 59-68. Go to original source...
  13. FARAHANY, S., OURDJINI, A., BAKHSHESHI-RAD, H.R. (2016). Microstructure, mechanical properties and corrosion behavior of Al-Si-Cu-Zn-X (X=Bi, Sb, Sr) die cast alloy. In: Transactions of Nonferrous Metals Society of China, 2016. 26(1): pp. 28-38. Go to original source...
  14. SOO, V.K., et al. (2018). Sustainable aluminium recycling of end-of-life products: A joining techniques perspective. In: Journal of Cleaner Production, 2018. 178. pp. 119-132. Go to original source...
  15. GRIMAUD, G., PERRY, N., LARATTE, B. (2018). Aluminium cables recycling process: Environmental impacts identification and reduction. In: Resources, Conservation and Recycling, 2018. 135. pp. 150-162. Go to original source...
  16. GRONOSTAJSKI, J., A. MATUSZAK, A. (2000). New methods of aluminium and aluminium-alloy chips recycling. In: Journal of Materials Processing Technology, 2000: pp. 34-39 Go to original source...
  17. ŠERÁK, J., VODĚROVÁ, M., VOJTĚCH, D., NOVÁK, P. (2014). Microstructure and Properties of Magnesium Alloys Working at Elevated Temperatures, Manufacturing Technology, Vol. 14, No. 2, 2014, pp. 238-244. J.E. Purkyne University in Usti and Labem. Czech Republic. Go to original source...
  18. ŠERÁK, J., VOJTĚCH, D. (2017). Dispersion of Mechanical Properties of Commercial Aluminium Alloys within Their Material Standards. Manufacturing Technology, Vol. 17, No. 5, 2017, pp. 831-837. J.E. Purkyne University in Usti and Labem. Czech Republic. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.