Manufacturing Technology 2019, 19(6):1060-1066 | DOI: 10.21062/ujep/418.2019/a/1213-2489/MT/19/6/1060

Tribological Mechanism in Chip Formation and Its Use to Improve Machining Process

Karol Vasilko
Faculty of Manufacturing Technologies, Technical University of Košice, 080 01 Prešov, Bayerova 1, SR

It is a well-known fact that during cutting there occurs an extremely high degree of chip plastic deformation. These deformation structures require attention as they influence technical and economical results of cutting (cutting forces, quality of machined surface, tool wear, cutting temperature). Intensive friction between the tool and the chip as well as inside the deformed chip trigger the mechanism of plastic deformation. The paper analyses the mechanism and suggests the possibilities of its use to influence the deformation field inside the chip with the aim to improve cutting process.

Keywords: machining, turning, plastic deformation, tool life, surface quality
Grants and funding:

The article has supported by project APPV-18-0316.

Published: December 1, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Vasilko K. Tribological Mechanism in Chip Formation and Its Use to Improve Machining Process. Manufacturing Technology. 2019;19(6):1060-1066. doi: 10.21062/ujep/418.2019/a/1213-2489/MT/19/6/1060.
Download citation

References

  1. DMOCHOVSKI, J. (1978) Podstavy obróbki skawaniem. Warszawa, 1978, 586 s.
  2. HOLEŠOVSKÝ, F. (1991) Materiály a technologie obrábění. Ústí nad Labem, UJEP, 1991, 250 s.
  3. TRENDT. M. (1991) Metal Cutting. London - Boston, : Ed. Oxford, Butterworths - Helnemann, 1991, 236 s., ISBN 0-7506-1068-9
  4. BUDA, J. BÉKÉS, J. (1967) Teoretické základy obrábania kovov. Bratislava: ALFA, 1967, 392s.
  5. HOSHI, K.HOSHI, T. (1969) On the metal cutting mechanism with the built-up-edge. Mem. Fac. Engng. Hokaido University 12, Nr. 3, 1969
  6. WEBER, T, N. () LOLADZE, T. N. (1986) Grundlagen des Spanens. Berlin: VEB Verlag Technik, 1986, 255 s.
  7. MÁDL, J., KVASNIČKA, I. (1998) Optimalizace obráběcího procesu. Praha: ČVUT, 1998, 168 s.
  8. PŘIKRYL, Z., MUSÍLKOVÁ, R. (1971) Teorie obrábění. Praha: SNTL, 1971, 198 s.
  9. BUDA, J., VASILKO, K. Metóda zastavenia procesu obrábania bez špeciálnych prípravkov. Patent SR 122243.
  10. KALPAKJIAN, S. (1989) Manufacturing Enineering and Technology. New York: Addison-Wesley Publishing Company, 1989, 1199, ISBN 0-201-12849-7
  11. WORTHINGTON, B. (1974) Surface integrity, cutting forces and chip formation when machining with double rake angle tools. International Journal Mechanical Tool Design and Research, 1974, 14, No. 3, pp. 279-295. Go to original source...
  12. ŠERAK, J., VOJTECH, D. (2017) Dispersion of Mechanical Properties of CommencialAluminum Alloys within Their Material Standarts. Manufacturing Technology, 2017, Vol 17, Nr.5, pp. 831-837. Go to original source...
  13. HOLEŠOVSKÝ, F., HRALA, M., NOVÁK, M. (2013) Ground Surface-Quality and its oading Capacity. Manufacturing Technology, 2013, Vol. 3, pp. 26-32, ISSN 1213-2489.
  14. JERSAK, J et al. (2017) The integrity of the Surface after Milling of Bearing Steel. Manufacturing Technology, 2017, No. 4, pp. 13-20, ISSN 1213-2489.
  15. VASILKO, K., ŠLESÁR, M. Sústružnícky nůž.. Patent SR č. 262 642.

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.