Manufacturing Technology 2020, 20(2):170-176 | DOI: 10.21062/mft.2020.034

The formation and elimination of the negative influence of porosity on the properties of the alloy castings AlSi10Mg

Iryna Hren, Milan Luňák, Sylvia Ku¶mierczak
Faculty of Mechanical Engineering, J. E. Purkyne University in Usti nad Labem. Pasteurova 3334/7, 400 01 Usti nad Labem. Czech Republic

Aluminum alloys are often contaminated with non-metallic inclusions. A large number of these phases accelerate the tendency of porosity in castings, significantly reduce corrosion resistance and above all affect mechanical properties. Melting is one of the conventional methods for removing inclusions from melt. The efficiency of this process is influenced by several parameters such as the chemical composition of the melt, the amount of refining substances (wire, salts, tablets), the melting point and the casting method. Therefore, an experiment was performed to evaluate the effect of PROBAT FLUSS MIKRO 100 on the structural integrity in AlSi10Mg alloy. Porosity evaluation was performed by light microscopy. To confirm the results and their reflexes into the practical production of castings, a static tensile test was performed on the cast samples directly in the foundry operation.

Keywords: Keywords: AlSi10Mg alloy, casting defects, porosity, static tensile test
Grants and funding:

Grant UJEP-SGS-2020-48-002-2.
Grant UJEP-SGS-2019-48-001-2.  Grant UJEP-SGS-2019-48-003-2.

Prepublished online: August 17, 2020; Published: August 18, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hren I, Luňák M, Ku¶mierczak S. The formation and elimination of the negative influence of porosity on the properties of the alloy castings AlSi10Mg. Manufacturing Technology. 2020;20(2):170-176. doi: 10.21062/mft.2020.034.
Download citation

References

  1. MICHNA, S. et al. (2007). Aluminium Materials and Technologies from A to Z, Adin, ISBN 978- 80-89244-18-8.
  2. KUSMIERCZAK, S., SLAVIK, M. (2018). Analysis of Al-Si layer on steel sheet during thermo mechanical processing using microscopic methods. In: Manufacturing Technology, Vol. 18 (5), pp. 769-774. ISSN 1213-2489. DOI: 10.21062/ujep/175.2018/a/1213-2489/MT/18/5/769 Go to original source...
  3. LAGO, J., et al. (2016). Qualitative Evaluations of the AlSi7Mg0.3 Microstructure by the X-Ray Diffractometry. Manufacturing Technology, Vol. 16, No. 6, pp. 1284-1291. ISSN 1213-2489. DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/6/1284 Go to original source...
  4. HREN, I., SVOBODOVA, J., MICHNOVA, L., MICHNA, ©., BENE©, L. (2018). Research on the effect of beryllium on the modification and change of mechanical properties of Al-Si alloys. Advanced manufacturing and repair technologies in vehicle industry monograph, 2018, pp. 123 - 136.
  5. TILLOVÁ, E., CHALUPOVÁ, M., HURTALOVÁ, L., BONEK, M., DOBRZANSKI, L.A, (2011). Structural analysis of heat treated automotive cast alloy. In: Journal of Achievements in Materials and Manufacturing Engineering/JAMME, Vol. 47, No. 1, pp. 19-25.
  6. TILLOVA, E., CHALUPOVA, M., HURTALOVA, L., DURINIKOVA, E. (2011). Quality Control of Microstructure in Recycled Al-Si Cast Alloys. Manufacturing Technology, Vol. 11, No. 11, pp. 70-76. Go to original source...
  7. NÁPRSTKOVÁ, N., CAIS, J., SVOBODOVÁ, J. (2013). The Effect of Modification by Strontium of the AlSi7Mg0.3 Alloy on the Surface Roughness. Manufacturing Technology, Vol. 13, No. 3, pp. 380-384. Go to original source...
  8. MICHNA, ©., NÁPRSTKOVÁ, N., LUKÁČ, I. (2011). Mechanical Properties Optimization of AlSi12CuMgNi Alloy by Heat Treatment. Metallofizika i Noveishie Teknologii, Vol. 11.
  9. DOBRZANSKI, L., BOREK, W., MAZURKIEWICZ, J. (2015). Influence of Thermo-Mechanical Treatments on Structure and Mechanical Properties of High-Mn Steel. Advanced Materials research; Zurich1127, pp. 113-119. Go to original source...
  10. HREN, I., MICHNA, ©., CAIS, J., LYSOŇKOVÁ, I., HODINÁŘ, L. (2018). Výzkum vlivu beryllia na modifikaci a změnu mechanických vlastností u slitiny ASi7Mg0.3. Strojírenská technologie, červen 2018, roč. XXIII, č. 1, ISSN 1211 - 4162.
  11. KUSMIERCZAK, S., NAPRSTKOVA, N. (2018). Analysis of Al-Si layer on steel sheet during thermo mechanical processing using microscopic methods. Manufacturing Technology, Vol.18, No 5, pp. 769-774. Go to original source...
  12. MICHNA, ©., LUKÁČ, I. (2012). Praktická fraktografie. OPTYS, spol. s r.o., Univerzita J. E. Purkyně v Ústí nad Labem, s. 237.
  13. ČSN EN 1796 - Hliník a slitiny hliníku - Odlitky - Chemické sloľení a mechanické vlastnosti
  14. L. BACKERUD, L., CHAI, G., TAMMINEN, J. (1990). Solidification Characteristics of Aluminum Alloys. Foundry Alloys, Vol. 2, pp. 25-38.

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.