Manufacturing Technology 2020, 20(4):453-458 | DOI: 10.21062/mft.2020.072

Application of genetic algorithm methods for water turbine blade shape optimization

Martin Kantor1, Milan Chalupa1, Jiří Souček2, Eva Bílková2, Petr Nowak2
1 Faculty of Mechanical Engineering, J. E. Purkyně University, Adress: Na Okraji 1001/7, Ústí nad Labem 400 01 Czech Republic
2 Faculty of Civil Engineering, Czech Technical University in Prague, Adress: Thákurova 7, Praha 166 29 Czech Republic

The use of modern production techniques such as 3D printing brings new requirements for shaping ma-chine parts. In the case of the production of the runner blades of Kaplan micro-turbine using 3D printing technology from plastic, the emphasis is on the mechanical properties of the blade and hydraulic proper-ties of the entire turbine. Achieving the required parameters is conditioned by finding a suitable shape of the runner. Therefore the design, virtual testing, optimization and evaluation process is automated. The paper describes the whole process where virtual testing of hydraulic parameters is performed by CFD simulations, and the methods of genetic algorithms are used for optimization. Selected final geometrical shapes of the blade are subjected to a more detailed analysis of hydraulic parameters in the wider oper-ating range and also to the strength analysis.

Keywords: low head Kaplan turbine, Optimization, CFD simulations, FEA simulations, 3D printing
Grants and funding:

The project of Innovative Design of Compact Unit of Kaplan Micro-Turbine TH04010140, the Technology Agency of the Czech Republic within the Epsilon Program.

Received: May 1, 2020; Revised: August 31, 2020; Accepted: September 24, 2020; Prepublished online: November 23, 2020; Published: December 8, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kantor M, Chalupa M, Souček J, Bílková E, Nowak P. Application of genetic algorithm methods for water turbine blade shape optimization. Manufacturing Technology. 2020;20(4):453-458. doi: 10.21062/mft.2020.072.
Download citation

References

  1. CAESES: manuals and blog, [online] [quoted 6.6.2019]. Available from z: www.caeses.com, 2019.
  2. ANSYS: manuals, [online] [quoted 6.6.2019]. Available from: www.ansys.com, 2019.
  3. DAKOTA: manual, [online] [quoted 6.6.2019]. Available from: https://dakota.sandia.gov/,2019.
  4. Štěch, S., Kantor, M. (2014): Využití metod isogeometrické analýzy pro optimalizaci vodních tur-bín. [Use of isogeometric analysis methods to optimize water turbines] Proceedings. HYDROTURBO 2014, Bratislava.
  5. Kantor, M. (2018): Numerické výpočty proudění v rotačních strojích [Numerical calculations of flow in rotary machines], Experimentální a výpočtové metody v inženýrství, str. 16-24, Ústí nad Labem, ISBN 978-80-7561-122-2, 2018.
  6. Gentzsch,W., Kantor, M., Yenier, B. (2018). Kaplan turbine flow simulation using OpenFOAM in the Advania Cloud - An UberCloud Experiment [online] [quoted 28.5.2018]. Avaiable from: https://community.theubercloud.com/team-198-kaplan-turbine-flow-simulation-using-openfoam-in-the-cloud/
  7. Kantor, M. (2018): Strategie tvarové optimalizace oběžné lopatky Kaplanovy turbíny [Strategy of shape optimization of Kaplan turbine blade], Sborník konference Hydroturbo 2018, Bratislava, ISBN 978-80-227-4829-2.
  8. Benigni, H., Montenari, B., Jaberg, H., Schiffer, J., Gehrer, A., Grundner, F., Döltelmayer, R (2016).: Simulation of damages due to cavitation in non-rotating components in a Kaplan turbine, Conference: 19th Internationales Seminar Wasserkraftanlagen, At Laxenburg / Wien.
  9. Semenova, A., Chirkov, D., Lyutov, A., Chemy, S., Skorospelov, V., Pylev, I.(2014): Multi-objective shape optimization of runner blade for Kaplan turbine, 27th IAHR Symposium on Hydraulic Machinery and Systems (IAHR 2014). Go to original source...
  10. Petru, M., Mlynek, J., Martinec, T. (2018). Numerical Modelling for Optimization of Fibres Winding Process of Manufacturing Technology for the Non-Circular Aerospaces Frames. Manufacturing Technology, vol. 18, 1, pp. 90-98. doi: 10.21062/ujep/59.2018/a/1213-2489/MT/18/1/90 Go to original source...
  11. Kalina, T., Heller, P., Chval, Z., Sedláček, F., Křížek, M., Bartoň, L. (2018). Numerical Simulation and Experimental Testing of Two-axle Chassis of Low-floor Trams. Manufacturing Technology, 18(2), 248-254. doi: 10.21062/ujep/86.2018/a/1213-2489/MT/18/2/248 Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.