Manufacturing Technology 2020, 20(4):484-491 | DOI: 10.21062/mft.2020.085
Microstructural characterization and optimization of the ZnMg0.8(CaO)0.26 alloy processed by ball milling and subsequent extrusion
- 1 Institute of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 6, Prague 6, 166 28, Czech Republic
- 2 FZU – The Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
Zinc is one of the most promising elements for the preparation of biodegradable metallic implants. Despite low mechanical performance for load-bearing applications, the degradation characteristics of pure zinc belong to the best from all significant biodegradable metals (Zn, Mg, Fe). The enhancement of the mechanical properties is often reached using various methods of material processing, leading to grain refinement and subsequent enhancement of the mechanical properties. In this study, the microstructure, phase composition and the possible mechanisms of intermetallic phase formation in the ZnMgCaO alloy prepared by high energy ball milling and consolidated by extrusion were studied. Formation of the Mg2Zn11, MgZn2 and CaZn13 phases during the material processing was confirmed. The creation of the phases was, with high probability, significantly affected by the magnitudes of individual components of internal energy. The increment of the internal energy led to the formation of stable Mg2Zn11 phase as well as to CaZn13 formation. Based on our results and the characterization of the microstructure, the most suitable conditions for the preparation of a ZnMgCaO alloy were found.
Keywords: Zinc, Biodegradable materials, Powder metallurgy, High energy milling, Mechanical alloying
Grants and funding:
Czech Science Foundation (project no. 18-06110S).
Specific university research – grant No. A2_FCHT_2020_009.
Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21 – CZ.02.1.01/0.0/0.0/16 019/0000760)
Received: June 27, 2020; Revised: September 30, 2020; Accepted: October 12, 2020; Prepublished online: November 23, 2020; Published: December 8, 2020 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Zhang, X. and Valeriote, E. (1993). Galvanic protection of steel and galvanic corrosion of zinc under thin layer electrolytes. In: Corrosion Science.Vol. 34 No. (12): pp. 1957-1972. 0010-938X
Go to original source...
- Goicoechea, J., Garcia-Cordovilla, C., Louis, E. and Pamies, A. (1992). Surface tension of binary and ternary aluminium alloys of the systems Al-Si-Mg and Al-Zn-Mg. In: Journal of materials science.Vol. 27 No. (19): pp. 5247-5252. 0022-2461
Go to original source...
- Su, Y., Wang, K., Gao, J., Yang, Y., Qin, Y.-X., Zheng, Y. and Zhu, D. (2019). Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. In: Acta biomaterialia.Vol. 98 No.: pp. 174-185. 1742-7061
Go to original source...
- Yang, H., Jia, B., Zhang, Z., Qu, X., Li, G., Lin, W., Zhu, D., Dai, K. and Zheng, Y. (2020). Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. In: Nature communications.Vol. 11 No. (1): pp. 1-16. 2041-1723
Go to original source...
- Pospíšilová, I. and Vojtěch, D. Zinc alloys for biodegradable medical implants. in Materials Science Forum. 2014. Trans Tech Publ.
Go to original source...
- Zheng, Y., Gu, X. and Witte, F. (2014). Biodegradable metals. In: Materials Science and Engineering: R: Re-ports.Vol. 77 No.: pp. 1-34. 0927-796X
Go to original source...
- Han, H.-S., Loffredo, S., Jun, I., Edwards, J., Kim, Y.-C., Seok, H.-K., Witte, F., Mantovani, D. and Glyn-Jones, S. (2019). Current status and outlook on the clinical translation of biodegradable metals. In: Materials Today.Vol. 23 No.: pp. 57-71. 1369-7021
Go to original source...
- Redlich, C., Quadbeck, P., Thieme, M. and Kieback, B. (2020). Molybdenum - A biodegradable implant material for structural applications? In: Acta Biomaterialia.Vol. 104 No.: pp. 241-251. 1742-7061
Go to original source...
- Liu, Y., Zheng, Y., Chen, X.H., Yang, J.A., Pan, H., Chen, D., Wang, L., Zhang, J., Zhu, D. and Wu, S. (2019). Fundamental theory of biodegradable metals-definition, criteria, and design. In: Advanced Functional Materials.Vol. 29 No. (18): pp. 1805402. 1616-301X
Go to original source...
- Su, Y., Cockerill, I., Wang, Y., Qin, Y.-X., Chang, L., Zheng, Y. and Zhu, D. (2019). Zinc-Based Biomaterials for Regeneration and Therapy. In: Trends in Biotechnology. Vol. 37 No. (4): pp. 428-441. 0167-7799
Go to original source...
- Čapek, J., Kubásek, J., Pinc, J., Drahokoupil, J., Čavojský, M. and Vojtěch, D. (2020). Extrusion of the biode-gradable ZnMg0. 8Ca0. 2 alloy-The influence of extrusion parameters on microstructure and mechanical characteristics. In: Journal of the Mechanical Behavior of Biomedical Materials.Vol. No.: pp. 103796. 1751-6161
Go to original source...
- Liu, X., Sun, J., Yang, Y., Zhou, F., Pu, Z., Li, L. and Zheng, Y. (2016). Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals. In: Materials Letters.Vol. 162 No.: pp. 242-245. 0167-577X
Go to original source...
- Yin, Y.-X., Zhou, C., Shi, Y.-P., Shi, Z.-Z., Lu, T.-H., Hao, Y., Liu, C.-H., Wang, X., Zhang, H.-J. and Wang, L.-N. (2019). Hemocompatibility of biodegradable Zn-0.8 wt%(Cu, Mn, Li) alloys. In: Materials Science and Engineering: C.Vol. 104 No.: pp. 109896. 0928-4931
Go to original source...
- Watson, R.R., Preedy, V.R. and Zibadi, S., Magnesium in human health and disease. 2012: Springer.
Go to original source...
- Cashman, K. (2002). Calcium intake, calcium bioavailability and bone health. In: British journal of Nutrition.Vol. 87 No. (S2): pp. S169-S177. 1475-2662
Go to original source...
- Mao-jiang, W. (2012). The Relationship Between Strontium and Human Health [J]. In: Studies of Trace Elements and Health.Vol. 5 No.
- Vojtěch, D., Kubásek, J., Šerák, J. and Novák, P. (2011). Mechanical and corrosion properties of newly developed bi-odegradable Zn-based alloys for bone fixation. In: Acta Biomaterialia.Vol. 7 No. (9): pp. 3515-3522. 1742-7061
Go to original source...
- Nayeb-Hashemi, A. (1988). Phase diagrams of binary magnesium alloys. In: ASM International, Metals Park, Ohio 44073, USA, 1988. 370.
Go to original source...
- Kubasek, J. and Vojtěch, D. (2012). Zn-based alloys as an alternative biodegradable materials. In: Proc. Metal.Vol. 5: pp. 23-25.
- Čapek, J., Kubásek, J., Pinc, J., Maňák, J., Molnárová, O., Drahokoupil, J. and Čavojský, M. (2020). ZnMg0. 8Ca0. 2 (wt%) biodegradable alloy-The influence of thermal treatment and extrusion on microstructural and mechanical characteristics. In: Materials Characterization. pp. 110230. 1044-5803
Go to original source...
- Yang, Z., Shi, D., Wen, B. and Melnik, R. (2012). Structural, elastic, electronic properties and heats of formation of Ca-Zn intermetallics from first principles calculations. In: Journal of alloys and compounds.Vol. 524: pp. 53-58. 0925-8388
Go to original source...
- Pinc, J., Čapek, J., Hybášek, V., Průša, F., Hosová, K., Maňák, J. and Vojtěch, D. (2020). Characterization of Newly Developed Zinc Composite with the Content of 8 wt.% of Hydroxyapatite Particles Processed by Extrusion. In: Mate-rials.Vol. 13 No. (7): pp. 1716.
Go to original source...
- Ito, A., Kawamura, H., Otsuka, M., Ikeuchi, M., Ohgushi, H., Ishikawa, K., Onuma, K., Kanzaki, N., So-go, Y. and Ichinose, N. (2002). Zinc-releasing calcium phosphate for stimulating bone formation. In: Materials Science and Engineering: C.Vol. 22 No. (1): pp. 21-25. 0928-4931
Go to original source...
- Groza, J.R. and Gibeling, J.C. (1993). Principles of particle selection for dispersion-strengthened copper. In: Materials Science and Engineering: A.Vol. 171 No. (1): pp. 115-125. 0921-5093
Go to original source...
- Li, H., Yang, H., Zheng, Y., Zhou, F., Qiu, K. and Wang, X. (2015). Design and characterizations of novel biode-gradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. In: Materials & Design.Vol. 83 No.: pp. 95-102. 0264-1275
Go to original source...
- Panda, A., Dobransky, J., Jančik, M., Pandova, I. and Kačalova, M. (2018). Advantages and effectiveness of the powder metallurgy in manufacturing technologies. In: Metalurgija.Vol. 57 No. (4): pp. 353-356. 0543-5846
- Pinc, J., Miklášová, E., Průša, F., Čapek, J., Drahokoupil, J., & Vojtěch, D. (2019). Influence of Processing on the Microstructure and the Mechanical Properties of Zn/HA8 wt.% Biodegradable Composite. Manuf. Technol, Vol. 19, 836-841.
Go to original source...
- Salvetr, P., Školáková, A., Průša, F., & Novák, P. (2017). Microstructure and Mechanical Properties of Ni-Ti-X All-oys Sintered by Spark Plasma Sintering. Manufacturing Technology, Vol. 17(4), 566-569.
Go to original source...
- Sivakumar, M., Dasgupta, A., Ghosh, C., Sornadurai, D. and Saroja, S. (2019). Optimisation of high energy ball milling parameters to synthesize oxide dispersion strengthened Alloy 617 powder and its characterization. In: Advanced Powder Technology.Vol. 30 No. (10): pp. 2320-2329. 0921-8831
Go to original source...
- Zhang, Y.-N., Kevorkov, D., Bridier, F. and Medraj, M. (2011). Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys. In: Science and Technology of Advanced Materials.Vol. 12 No. (2): pp. 025003. 1468-6996
Go to original source...
- Xi, S., Zhou, J. and Wang, X. (2007). Research on temperature rise of powder during high energy ball milling. In: Powder metallurgy.Vol. 50 No. (4): pp. 367-373. 0032-5899
Go to original source...
- Čapek, J., Kubásek, J., Pinc, J., Maňák, J., Molnárová, O., Drahokoupil, J. and Čavojský, M. (2020). ZnMg0.8Ca0.2 (wt%) biodegradable alloy - The influence of thermal treatment and extrusion on microstructural and mechanical characteristics. In: Materials Characterization.Vol. 162: pp. 110230. 1044-5803
Go to original source...
This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.