Manufacturing Technology 2020, 20(5):668-676

The Effect of Zinc and Calcium Addition on Magnesium Alloy

Andrea Školáková1,2, Tomáš Lovaši1, Jan Pinc1,2, Zdeněk Kačenka1, Lenka Rieszová1, Zuzana Žofková1
1 Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
2 Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic

The magnesium alloys, alloyed by the low amount of calcium and zinc concurrently, are considered as a biodegradable materials for implants. However, the as-cast alloy exhibits the insufficient mechanical properties as well as corrosion resistance which are affected mainly by the presence of brittle secondary phases, such as Mg2Ca. For this reason, presented work was focused on the as-cast magnesium alloy with alloying elements (Ca and Zn) whose content did not exceed 1 wt. %, specifically MgCa0.5Zn0.5 (in wt. %). Microstructure consisted of magnesium matrix with a very low amount of Mg2Ca and Ca2Mg6Zn3 phases which crystallized along the boundaries. These phases and their localization influenced the resulted mechanical properties. The hardness was higher due to them and tensile properties were worse than the compressive ones. The addition of zinc did not improve ductility, but in the case of compressive stress-strain test, the relative deformation was satisfactory. Moreover, the corrosion resistance of as-cast alloy MgCa0.5Zn0.5 was better than pure magnesium.

Keywords: Magnesium alloys, Biomaterials, Casting, Mechanical Properties, Corrosion resistance
Grants and funding:

Specific university research – grant No A2_FCHT_2020_066 and No A1_FCHT_2020_003.

Received: July 28, 2020; Revised: November 6, 2020; Accepted: November 23, 2020; Prepublished online: November 23, 2020; Published: December 14, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Školáková A, Lovaši T, Pinc J, Kačenka Z, Rieszová L, Žofková Z. The Effect of Zinc and Calcium Addition on Magnesium Alloy. Manufacturing Technology. 2020;20(5):668-676.
Download citation

References

  1. Wang, J.-L., Xu, J.-K., Hopkins, C., Chow, D. H.-K. and Qin, L. (2020). Biodegradable Magnesium-Based Implants in Orthopedics-A General Review and Perspectives. In: Advanced Science, Vol. 7, No. 8, pp. 1902443. 2198-3844 Go to original source...
  2. Virtanen, S. (2011). Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. In: Materials Science and Engineering: B, Vol. 176, No. 20, pp. 1600-1608. 0921-5107 Go to original source...
  3. Xu, Z., Smith, C., Chen, S. and Sankar, J. (2011). Development and microstructural characterizations of Mg-Zn-Ca alloys for biomedical applications. In: Materials Science and Engineering: B, Vol. 176, No. 20, pp. 1660-1665. 0921-5107 Go to original source...
  4. Castellani, C., Lindtner, R. A., Hausbrandt, P., Tschegg, E., Stanzl-Tschegg, S. E., Zanoni, G., Beck, S. and Weinberg, A.-M. (2011). Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. In: Acta Biomaterialia, Vol. 7, No. 1, pp. 432-440. 1742-7061 Go to original source...
  5. Xin, Y., Hu, T. and Chu, P. K. (2011). In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. In: Acta Biomaterialia, Vol. 7, No. 4, pp. 1452-1459. 1742-7061 Go to original source...
  6. Du, H., Wei, Z., Liu, X. and Zhang, E. (2011). Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg-3Ca alloys for biomedical application. In: Materials Chemistry and Physics, Vol. 125, No. 3, pp. 568-575. 0254-0584 Go to original source...
  7. Staiger, M. P., Pietak, A. M., Huadmai, J. and Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. In: Biomaterials, Vol. 27, No. 9, pp. 1728-1734. 0142-9612 Go to original source...
  8. Datta, M. K., Chou, D.-T., Hong, D., Saha, P., Chung, S. J., Lee, B., Sirinterlikci, A., Ramanathan, M., Roy, A. and Kumta, P. N. (2011). Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying. In: Materials Science and Engineering: B, Vol. 176, No. 20, pp. 1637-1643. 0921-5107 Go to original source...
  9. Papillon, J., Salero, P., Mercier, F., Fabrègue, D. and Maire, É. (2019). Compressive deformation behavior of dendritic Mg-Ca(-Zn) alloys at high temperature. In: Materials Science and Engineering: A, Vol. 763, No. pp. 138180. 0921-5093 Go to original source...
  10. Zhang, B., Wang, Y., Geng, L. and Lu, C. (2012). Effects of calcium on texture and mechanical properties of hot-extruded Mg-Zn-Ca alloys. In: Materials Science and Engineering: A, Vol. 539, No. pp. 56-60. 0921-5093 Go to original source...
  11. Bakhsheshi-Rad, H. R., Idris, M. H., Abdul-Kadir, M. R., Ourdjini, A., Medraj, M., Daroonparvar, M. and Hamzah, E. (2014). Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys. In: Materials & Design, Vol. 53, No. pp. 283-292. 0261-3069 Go to original source...
  12. Atrens, A., Liu, M. and Zainal Abidin, N. I. (2011). Corrosion mechanism applicable to biodegradable magnesium implants. In: Materials Science and Engineering: B, Vol. 176, No. 20, pp. 1609-1636. 0921-5107 Go to original source...
  13. Li, Z., Gu, X., Lou, S. and Zheng, Y. (2008). The development of binary Mg-Ca alloys for use as biodegradable materials within bone. In: Biomaterials, Vol. 29, No. 10, pp. 1329-1344. 0142-9612 Go to original source...
  14. Rad, H. R. B., Idris, M. H., Kadir, M. R. A. and Farahany, S. (2012). Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys. In: Materials & Design, Vol. 33, No. pp. 88-97. 0261-3069 Go to original source...
  15. Nie, J. F. and Muddle, B. C. (1997). Precipitation hardening of Mg-Ca(-Zn) alloys. In: Scripta Materialia, Vol. 37, No. 10, pp. 1475-1481. 1359-6462 Go to original source...
  16. Du, Y. Z., Zheng, M. Y., Xu, C., Qiao, X. G., Wu, K., Liu, X. D., Wang, G. J. and Lv, X. Y. (2013). Microstructures and mechanical properties of as-cast and as-extruded Mg-4.50Zn-1.13Ca (wt%) alloys. In: Materials Science and Engineering: A, Vol. 576, No. pp. 6-13. 0921-5093 Go to original source...
  17. Wiese, B. (2012). Projektarbeit: Thermodynamische Berechnung des Mg-Ca-Phasendiagramms. In: Flensburg/Geesthacht: FH Flensburg.
  18. Zander, D. and Zumdick, N. A. (2015). Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys. In: Corrosion Science, Vol. 93, No. pp. 222-233. 0010-938X Go to original source...
  19. Bakhsheshi-Rad, H. R., Abdul-Kadir, M. R., Idris, M. H. and Farahany, S. (2012). Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0.5Ca-xZn alloys. In: Corrosion Science, Vol. 64, No. pp. 184-197. 0010-938X Go to original source...
  20. Stepanov, N. D., Yurchenko, N. Y., Sokolovsky, V. S., Tikhonovsky, M. A. and Salishchev, G. A. (2015). An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. In: Materials Letters, Vol. 161, No. pp. 136-139. 0167-577X Go to original source...
  21. Sun, Y., Zhang, B., Wang, Y., Geng, L. and Jiao, X. (2012). Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. In: Materials & Design, Vol. 34, No. pp. 58-64. 0261-3069 Go to original source...
  22. Cihova, M., Martinelli, E., Schmutz, P., Myrissa, A., Schäublin, R., Weinberg, A. M., Uggowitzer, P. J. and Löffler, J. F. (2019). The role of zinc in the biocorrosion behavior of resorbable Mg‒Zn‒Ca alloys. In: Acta Biomaterialia, Vol. 100, No. pp. 398-414. 1742-7061 Go to original source...
  23. Wan, Y., Xiong, G., Luo, H., He, F., Huang, Y. and Zhou, X. (2008). Preparation and characterization of a new biomedical magnesium-calcium alloy. In: Materials & Design, Vol. 29, No. 10, pp. 2034-2037. 0261-3069 Go to original source...
  24. Cain, T., Bland, L. G., Birbilis, N. and Scully, J. R. (2014). A Compilation of Corrosion Potentials for Magnesium Alloys. In: Corrosion Vol. 70, No. 10, pp. 1043-1051. Go to original source...
  25. Nam, N. D. (2015). Role of Zinc in Enhancing the Corrosion Resistance of Mg-5Ca Alloys. In: Journal of The Electrochemical Society, Vol. 163, No. 3, pp. C76-C84. The Electrochemical Society. 0013-4651, 1945-7111 Go to original source...
  26. Lovaši, T., Pinc, J., Voňavková, I. (2019). Zinc-based Degradable Biomaterials - Limitations and Enhancements. In: Manufacturing Technology, Vol. 19, No. 4, pp. 632-636. Go to original source...
  27. Dvorský, D., Kubásek, J., Vojtěch, D. (2017). Characterization of Composite Material with Magnesium Matrix Prepared by Powder Metallurgy. In: Manufacturing Technology, Vol. 17, No. 5, pp. 691-695. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.